Составляющие надежности. Основные понятия надежности. классификация отказов. Составляющие надежности Показатели качества продукции по количеству характеризуемых свойств

Надежность. - это свойство машины, ее узла или детали выполнять заданные функции, сохраняя свои эксплуатационные показатели (производительность, мощность, расход энергии, точность и др.) в заданных пределах в течение требуемого промежутка времени или требуемой наработки (в километрах, гектарах, кубометрах, циклах или др.)

Терминология по надежности в технике распространяется на любые технические объекты-изделия, сооружения и системы, а также их подсистемы, рассматриваемые с точки зрения надежности на этапах проектирования, производства, испытаний, эксплуатации и ремонта. В качестве подсистем могут рассматриваться сборочные единицы, детали, компоненты или элементы. При необходимости в понятие "объект" могут быть включены информация и ее носители, а также человеческий фактор (например, при рассмотрении надежности системы "машина-оператор").

На стадии разработки термин “объект” применяется к наугад выбранному представителю из генеральной совокупности объектов.

Надежность - комплексное свойство, состоящее в общем случае из безотказности, долговечности, ремонтопригодности и сохраняемости. Например, для неремонтируемых объектов основным свойством может являться безотказность. Для ремонтируемых объектов одним из важнейших свойств, составляющих понятие надежности, может быть ремонтопригодность.

Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации.

Элемент - простейшая составная часть изделия, в задачах надежности может состоять из многих деталей.

Система - совокупность совместно действующих элементов, предназначенная для самостоятельного выполнения заданных функций.

12 .Показатели безотказности: вероятность безотказной работы, средняя наработка до отказа, интенсивность отказов, параметр потока отказов, наработка на отказ. Закон Вейбулла для характеристики распределения отказов, типичная кривая изменения плотности вероятности отказов в процессе эксплуатации объектов.


Вероятность безотказной работы - это вероятность того, что в пределах заданной наработки отказ объекта не возникает. На практике этот показатель определяется статистической оценкой

где N0 - исходное число работоспособных объектов, n(t) - число отказавших объектов за время t.

Средняя наработка до отказа Математическое ожидание наработки объекта до первого отказа.

Наработка до отказа - эквивалентный параметр для неремонтопригодного устройства. Поскольку устройство неремонтируемое, то это просто среднее время, которое проработает устройство до того момента, как сломается.

Наработка - продолжительность или объем работы объекта, измеряемая в часах, мото-часах, гектарах, километрах пробега, циклов включений и др.

Измеряется статистически, путём испытания множества приборов, или вычисляется методами теории надёжности.

Т = 1/m * Σti где ti - наработка i-го объекта между отказами; m - число отказов.

Интенсивность отказов. Условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Интенсивностью отказов называется соотношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Параметр потока отказов. Отношение математического ожидания числа отказов восстанавливаемого объекта за достаточно малую его наработку к значению этой наработки.

Рис. 4.1.1. Основные свойства технических систем

В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Таким образом:
1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности.

Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы).

Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость.

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Ремонтопригодность - свойство объекта быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта.

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов.

Сохраняемость - свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки.

Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

Показатели безотказности и ремонтопригодности
Наработка до отказа - вероятность того, что в пределах заданной наработки отказ объекта не возникнет (при условии работоспособности в начальный момент времени).
Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа".

Средняя наработка до отказа - математическое ожидание случайной наработки объекта до первого отказа.
Средняя наработка между отказами - математическое ожидание случайной наработки объекта между отказами.

Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению.
Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки.

Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.
Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта).

Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени.

Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.

Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и начиная с этого момента времени будет работать безотказно в течение заданного времени.

Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности.

Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени.
Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс.

Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.
Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени.

Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.

Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

Показатели долговечности и сохраняемости

При оценке качества строительных материалов должны в полной мере учитываться их свойства. Согласно существует система показателей качества, в которую входят: показатели назначения, надежности и долговечности, эргономические показатели и т.д.

Показатели назначения. Эти показатели характеризуют полезный эффект от использования продукции по назначению и определяют область ее применения. В общем виде к показателям целевого назначения относят прочностные (прочность на сжатие и растяжение, жесткость, трещиностойкость, ударную прочность, сейсмостойкость), а также теплофизические показатели и стойкость к внешним воздействиям (морозостойкость, влагостойкость, стойкость к воздействию солнечной радиации, термостойкость, огнестойкость, теплопроводность, водонепроницаемость, показатели звукоизоляции, светопропускания и др.).

Необходимая для оценки качества номенклатура показателей назначения регламентируется системой стандартов предусматривает следующие показатели назначения для каменных стеновых материалов: пределы прочности при сжатии и изгибе, водопоглощение, отпускную влажность, морозостойкость, линейную усадку. Учитывая, что материалы предназначены для работы в ограждающей стеновой конструкции и должны обладать большим термическим сопротивлением, в стандарт включен один из важнейших показателей - теплопроводность стенового материала

При оценке уровня качества продукции показатели назначения часто применяют совместно с показателями других видов. Наиболее тесно к показателям назначения примыкают показатели надежности и долговечности.

Также к этой группе относятся показатели конструктивности характеризуют степень технического совершенства и прогрессивность материала, изделия или конструкции. Для строительных изделий показателями конструктивности служат геометрическая форма и размеры, нормируемые допуски. Применительно к материалам в качестве показателей конструктивности используют характеристики состава и структуры. Например, для цемента используют характеристику по содержанию основных минералов клинкера; бетонные смеси характеризуют видом и соотношением исходных материалов и т. д.



Показатели надежности и долговечности. Эти показатели характеризуют свойства надежности и долговечности материалов, изделий или строительных объектов. Применительно к процессу изготовления продукции заслуживает внимания - также надежность технологического оборудования, используемого при производстве изделий и технологии в целом.

Показатели надежности характеризуют степень выполнения продукцией своих функций в течение заданного срока службы в определенных условиях внешней среды с сохранением своих свойств при условии соблюдения правил эксплуатации. Свойство надежности закладывается на стадии разработки продукции, обеспечивается на стадии ее производства и поддерживается на стадии эксплуатации.

Проблема надежности строительных конструкций и систем становится все более важной в связи с повышением этажности сооружений, увеличением числа сборных элементов и количества стыков, стремлением выполнить конструкции как можно более легкими и тонким.

Надежность - сложное свойство изделия, которое в общем случае складывается из частных свойств: долговечности, безотказности, ремонтопригодности и сохраняемости.

Безотказностью называют свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. В основном безотказность рассматривают применительно к режиму работы объекта, но иногда приходится оценивать безотказность при его хранении и транспортировании) К показателям безотказности относят вероятность безотказной работы, среднюю наработку до отказа, наработку до отказа, интенсивность отказов и др.

Наработка до отказа - это продолжительность или объем работы объекта от начала его эксплуатации до возникновения первого отказа. Ее измеряют в единицах времени (при непрерывном режиме работы изделия) либо в циклах, когда изделие работает с интервалами. Наработку до отказа используют для характеристики безотказности единичного изделия. Для оценки безотказности группы (партии) изделий следует применять показатели, отражающие изменение свойств продукции с учетом их статистической изменчивости. Такими показателями являются средняя наработка до отказа, гамма-процентная наработка до отказа и интенсивность отказов и др.

Средняя наработка до отказа отражает математическое ожидание наработки до первого отказа. Гамма-процентная наработка до отказа характеризует наработку, в течение которой отказ объекта не возникает с вероятностью у, выраженной в процентах. Для количественного выражения безотказности неремонтируемых изделий используют показатель интенсивности отказов. Интенсивность отказов представляет собой вероятность отказа невосстанавливаемого изделия в единицу времени. В простейшем случае интенсивность отказов обратно пропорциональна наработке на отказ.

Вероятность безотказной работы характеризует вероятность того, что в пределах заданной наработки отказа объекта не возникнет. К моменту времени i, считая от начала эксплуатации объекта, вероятность его безотказной работы определяют по формуле P(t)= 1-F(t), где F(t) - функция распределения наработки до отказа, и выражают некоторым числом от нуля до единицы либо в процентах

Под долговечностью подразумевается свойство объекта сохранять работоспособность до предельного состояния с необходимыми перерывами на ремонт. Предельное состояние определяется разрушением объекта, требованиями безопасности или экономическими соображениями.

Для оценки долговечности строительных изделий применяют показатели, позволяющие прогнозировать срок службы изделий. В первую очередь это срок, характеризующий календарную продолжительность эксплуатации изделия до перехода в предельное состояние. Различают также назначенный срок службы, отражающий календарную продолжительность эксплуатации изделия, при достижении которой применение его по назначению должно быть прекращено, и средний срок службы, т. е. математическое ожидание срока службы.

Ремонтопригодность - свойство изделия, характеризующее его приспособленность к восстановлению работоспособного состояния в результате предупреждения, выявления и устранения отказов. Показателями ремонтопригодности служат среднее время восстановления работоспособного состояния, выражающее математическое ожидание времени восстановления, а также вероятность восстановления, т.е. вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного. Ремонтопригодность относится только к восстанавливаемым изделиям, системам и элементам.

Сохраняемость характеризует свойства объекта сохранять заданные значения безотказности, долговечности и ремонтопригодности в течение и после срока хранения и транспортирования, установленного технической документацией. Сохраняемость количественно оценивают временем хранения и транспортирования до возникновения неисправности. Можно выражать сохраняемость и снижением показателя надежности при последующей эксплуатации изделия.

Строительная практика показывает, что изделия могут утратить надежность не только в период эксплуатации, но и при хранении или транспортировке. Поэтому сохраняемость часто представляют в виде двух составляющих: одна из них проявляется в период хранения, а другая - во время применения объекта после хранения.

Показатели технологичности. В данную группу входят показатели, характеризующие эффективность конструкторско-технологических решений, которые должны быть направлены на достижение высокой производительности труда при минимальных затратах материалов, топлива и энергии на изготовление и ремонт продукции

Технологичность продукции характеризуется степенью использования типовых технологических процессов, наиболее рациональных исходных материалов и изделий централизованного производства, наилучшие обеспечением потребителя запасными частями и материалами, что приводит к увеличению производительности труда при изготовлении продукции и к снижению затрат на производство и эксплуатацию продукции. К основным показателям технологичности промышленной продукции относят коэффициент сборности (блочности) изделия и коэффициент использования рациональных материалов, а также удельные показатели трудоемкости производства, материало- и энергоемкости продукции.

Коэффициент сборности (блочности) изделия характеризует простоту монтажа изделия и представляет собой долю конструктивных элементов, входящих в специфицируемые блоки, в общем числе элементов всего изделия) Применительно к строительным изделиям (системам) коэффициент сборности выражает долю сборных элементов в общем числе составных частей изделия (системы):

где N сб - число сборных элементов в изделии; N - общее число элементов.

Чем больше значение коэффициента сборности, тем выше технологичность продукции.

Коэффициент использования рациональных материалов определяют в тех случаях, когда в конструкции изделия целесообразно по технико-экономическим соображениям использовать те или иные эффективные материалы (алюминиевые сплавы, полимерные строительные материалы и т.д.). Коэффициент использования материала:

(2.2)

где М и - общая масса изделия; М эм - суммарная масса эффективного материала в изделии.

Для легких эффективных материалов вследствие их малой плотности коэффициент использования будет иметь заниженное значение, поэтому для таких материалов в выражение надо вводить не массы, а объемы. С повышением коэффициента использования рациональных материалов уровень качества продукции возрастает.

Технологичность продукции удобно характеризовать показателями трудо- и материалоемкости. Трудоемкость производства продукции определяется количеством времени, затраченного на изготовление единицы продукции, и выражается для промышленных изделий в нормо-часах. Удельная трудемкость определяется как отношение общей трудоемкости производства Т к основному параметру продукции В:

q т =T/B, (2.3)

Удельная материалоемкость - отношение массы или объема готовой продукции М к ее основному параметру В:

q м =M/B (2.4.)

При определении удельной трудоемкости и удельной материалоемкости за основной параметр принимают показатели назначения продукции (прочность, плотность и т.д.). Техническая политика на предприятии должна быть направлена на уменьшение удельной трудоемкости, материалоемкости и энергоемкости продукции; уровень качества при этом возрастает.

Эргономические показатели. Эргономические показатели качества используют при определении соответствия изделия требованиям эргономики. Эргономика изучает взаимодействие в системе «человек - среда - изделие». Показатели эти охватывают всю область факторов, влияющих на работающего человека и эксплуатируемое изделие. Например, при изучении рабочего места следует учитывать не только рабочую позу Человека и его движения, дыхание, мышление, но и размеры сиденья, параметры инструментов, средства передачи информации и т. д.

Эргономические показатели подразделяют на гигиенические, антропометрические, физиологические и психологические.

Уровень эргономических показателей определяется экспертами - эргономистами по разработанной специальной шкале оценок в баллах.

Гигиенические показатели характеризуют соответствие изделия санитарно-гигиеническим нормам и рекомендациям. Эти показатели используются для оценки соответствия изделия гигиеническим условиям жизнедеятельности и работоспособности человека при взаимодействии его с изделием. В группу гигиенических показателей входят освещенность, температурный режим, влажность и давление, напряженность магнитного и электрического поля, уровни запыленности, излучения, токсичности, шума и вибрации, перегрузки (ускорений).

Влияние гигиенических показателей определяют путем измерения и оценки интенсивности отдельных факторов и сравнения полученных данных с нормативными. Например, при оценке уровня вибрации необходимо сопоставлять существующий уровень вибрации технологического оборудования (виброплощадок, глубинных, поверхностных и навесных вибраторов) с предельно допустимым по нормам. Степень вредности вибрации оценивается по предельным значениям виброскорости и амплитуды колебаний в зависимости от частоты.

Антропометрические показатели характеризуют изделия, входящие в непосредственную связь с человеком элементы органов управления, производственную мебель, одежду и обувь. В группу антропометрических показателей входят, показатели соответствия конструкции изделия размерам и форме тела человека и его отдельных частей, входящих в контакт с изделием; показатель соответствия конструкции изделия распределению массы человека.

Физиологические и психофизиологические показатели характеризуют соответствие изделия физиологическим свойствам человека и особенностям функционирования его органов чувств. Сюда входят следующие показатели: соответствие конструкции изделия скоростным и силовым возможностям человека; соответствие размера, формы, яркости, контраста, цвета изделия и пространственного положения объекта наблюдения зрительным психофизиологическим возможностям человека; соответствие конструкции изделия, содержащего источник информации, слуховым психофизиологическим возможностям человека; соответствие изделия и его элементов относительным возможностям человека.

Психологические показатели характеризуют соответствие изделия психологическим особенностям человека» находящим отражение в инженерно-психологических требованиях, требованиях психологии труда и общей психологии. В группу психологических входят показатели соответствия изделия возможностям восприятия и переработки информации и соответствия изделия закрепленным и вновь формируемым навыкам человека (с учетом легкости и быстроты их формирования) при пользовании изделием.

При оценке качества продукции с использованием эргономических показателей необходимо в промышленных изделиях выделять элементы, влияющие на работоспособность, производительность и утомляемость человека.

Показатели стандартизации и унификации. Сюда относят показатели, характеризующие степень насыщенности изделия стандартизованными и унифицированными деталями При разработке новых изделий необходимо стремиться не только к сокращению количества оригинальных составных частей, но и к уменьшению числа стандартизованных и унифицированных деталей, так как при прочих равных условиях качество изделия тем выше, чем меньше оно содержит составных частей.. Для единообразия в подсчетах показателей стандартизации и унификации составные части изделия принято разделять на стандартизованные, унифицированные и оригинальные. Стандартизованными считаются части изделия, выпускаемые по государственным, республиканским или отраслевым стандартам. К унифицированным относятся части изделия, выпускаемые по стандартам предприятия, а также получаемые им в готовом виде как комплектующие составные части (из находящихся в серийном производстве). Оригинальными называются составные части, разработанные специально для данного изделия.

Важнейшими показателями стандартизации и унификации являются коэффициенты применяемости и коэффициенты повторяемости.

Коэффициент применяемости характеризует степень насыщенности изделия стандартизованными и унифицированными составными частями. Различают коэффициент применяемости по типоразмерам и коэффициент применяемости по составным частям изделия. Например, коэффициент применяемости по типоразмерам:

(2.5)

где N об - общее число типоразмеров составных частей изделия, N об =N ст +N у +N о ;

N ст , N у и N о - число типоразмеров стандартизированных, унифицированных и оригинальных составных частей.

Кроме того, можно определять коэффициенты применяемости только по стандартизированным или только по унифицированным составным частям. Чем больше значения коэффициентов применяемости, тем выше при прочих равных условиях уровень качества продукции.

Коэффициент повторяемости характеризует степень унификации составных частей в изделии и может быть выражен в двух видах - безразмерным числом или в %:

, (2.6)

где - число составных частей в изделии.

Степень применяемости стандартных составных частей может быть выражена и с помощью стоимостного коэффициента, равного отношению стоимости стандартизованных составных частей к стоимости изделия в целом. Стоимостной коэффициент может быть отнесен и к группе экономических показателей.

Экономические показатели отражают затраты на разработку, изготовление и эксплуатацию продукции, а также экономическую эффективность эксплуатации. С помощью экономических показателей оценивают ремонтопригодность продукции, ее технологичность, уровень стандартизации и унификации, патентную чистоту. Экономические показатели учитывают также при составлении интегральных показателей качества продукции.

Эстетические показатели качества изделий. Эстетические показатели характеризуют информационную выразительность, рациональность формы, целостность композиции, совершенство производственного исполнения и стабильность товарного вида изделия .

Показатели информационной выразительности характеризуют степень отражения в форме изделия сложившихся в обществе эстетических представлений и культурных норм, которые проявляются:

В своеобразии элементов формы, выделяющих данное изделие среди других аналогичных изделий (оригинальность формы);

В преемственности признаков формы, характеризующих устойчивость средств и приемов художественной выразительности, свойственных определяемому периоду времени (стилевое соответствие);

В признаках внешнего вида изделия, выявляющих временно установившиеся эстетические вкусы и предпочтения (соответствие моде).

Показатели рациональности формы характеризуют соответствие формы объективным условиям изготовления и эксплуатации изделия, а также адекватность отражения в ней функционально-конструктивной сущности изделия. Рациональность формы это:

Соответствие формы изделия его назначению, конструктивному решению, особенностям технологии изготовления и применяемым материалам (показатель функционально-конструктивной обусловленности);

Учтенность в форме изделия способов и особенностей действий человека с изделием (показатель эргономической обусловленности).

Показатели целостности композиции характеризуют гармоничность единства частей и целого изделия, органичность взаимосвязи элементов формы изделия и его согласованность с другими изделиями. Целостность композиции предопределяет эффективность использования технических и художественных средств при создании единого композиционного решения.

Показатели совершенства изготовления элементов формы и поверхностей характеризуются:

Чистотой выполнения поверхностей контуров (показатель чистоты контуров);

Тщательностью нанесения покрытий и отделки поверхностей (показатель тщательности покрытий и отделки);

Четкостью изображения фирменных знаков, указателей, надписей, рисунков, символов, информационных материалов и т.п. (показатель четкости исполнения знаков и сопроводительной документации).

Показатели стабильности товарного вида таковы: устойчивость к повреждениям элементов внешнего вида изделия; сохраняемость цвета и др.

Оценку значений эстетических показателей качества изделий осуществляют экспертным методом комиссией, состоящей из квалифицированных специалистов в области художественного конструирования и дизайна. Экспертная комиссия оценивает выбранные эстетические показатели в баллах и определяет коэффициент весомости каждого показателя. На основе полученных значений единичных показателей и коэффициентов их весомости вычисляют обобщенный показатель эстетичности по формуле:

где К i - оценка единичного i -ro показателя эстетичности в баллах;

m i - коэффициент весомости i -го показателя,

п - число учитываемых единичных эстетических показателей.

Пример

Пусть на основе выполненного эстетико-конструкторского анализа эксперты определили оценки и коэффициенты весомости единичных показателей эстетичности. Требуется найти обобщенный показатель эстетичности изделия. Исходные данные и результаты расчетов приведены в табл. 2.1.


Таблица 2.1

Исходные данные для расчета

№ п/п Единичный показатель Оценка Коэффициент весомости m i m i ×K i
Оригинальность 1,0 0,05 0,05
Стилевое соответствие 0,8 0,02 0,016
Соответствие моде 0,5 0,03 0,015
Функционально-конструктивная обусловленность 1,0 0,25 0,25
Эргономическая обусловленность 0,5 0,18 0,09
Колорит и декоративность 1,0 0,04 0,04
Чистота выполнения контуров 0,9 0,10 0,09
Тщательность покрытия и отделки 1,0 0,12 0,12
Четкость исполнения фирменных знаков и сопроводительной документации 0,7 0,08 0,056
Устойчивость к повреждениям 0,8 0,13 0,104

Найдем показатель эстетичности по формуле (2.7)

Полученный результат свидетельствует о том, что эстетический уровень качества оцениваемого изделия не отвечает современным требованиям.

Патентно-правовые показатели. Патентно-правовые показатели - это в первую очередь показатели патентной защиты и патентной чистоты. Для расчета значений патентно-правовых показателей в зависимости от сложности изделия все его составные части делятся на группы с учетом их весомости.

Используют два показателя патентной защиты изделия: патентная защита в стране и за рубежом.

Показатель патентной защиты изделия внутри страны рассчитывается так:

(2.8)

где - количество групп значимости;

Коэффициент весомости составных частей изделия, защищенных патентами или авторскими свидетельствами страны;

Количество составных частей изделия, защищенных патентами или авторскими свидетельствами страны;

Общее количество составных частей изделия.

Показатель патентной защиты отечественного изделия патентами за рубежом определяется по формуле:

(2.9)

где - коэффициент, зависящий от количества стан, в которых получены патенты для экспорта изделий;

Коэффициент весомости составных частей изделия, защищенных зарубежными патентами;

Количество составных частей изделия, защищенных патентами за рубежом.

Общий показатель патентной защиты изделия , представляет собой сумму

(2.10)

Показатель патентной чистоты выражает правовую возможность реализации изделия как внутри страны, так и за рубежом. Показатель упрощенно рассчитывают по формуле:

(2.11)

где - количество составных частей изделия (по группам значимости), попадающих под действие патентов данной страны.

С учетом разделения составных частей изделия на особо важные, основные и вспомогательные показатель патентной защиты определяют по формуле:

(2.12)

где - индивидуальный коэффициент весомости особо важных составных частей;

Количество особо важных составных частей в изделии;

Коэффициент весомости частей, защищенных патентами России или в станах предполагаемого экспорта; -ой группе;

Количество составных частей изделия в группе, подпадающих под действие патентов, выданных в стране предполагаемой реализации;

Число групп значимости.

Экологические показатели. Актуальной проблемой сегодня стало опасное для людей воздействие на природу в процессе их жизнедеятельности. Материальными носителями опасных и вредных факторов для природы и человека становятся различные объекты, используемые в трудовых процессах. К таким объектам относятся: средства труда (машины, оборудование и другие технические изделия); предметы и продукты труда; технологии, природно-климатические условия и т.д.

Экологические показатели характеризуют уровень вредного воздействия на окружающую среду в процессе эксплуатации изделия. При обосновании необходимости учета экологических показателей для оценки качества изделия проводится анализ его работы с целью выявления возможных вредных химических, механических, световых, звуковых, биологических, радиационных и других воздействий на окружающую природную среду. При выявлении таких воздействий на природу соответствующие экологические показатели включают в номенклатуру показателей, принимаемых в перечень для оценки уровня качества изделия.

Экологические показатели техники можно разделить на три основные группы:

показатели, связанные с использованием материальных ресурсов природы,

показатели, связанные с использованием природных энергетических ресурсов;

показатели, связанные с загрязнением окружающей среды.

К первой группе показателей можно отнести: ресурсоемкость изготовления продукции, показатели потребления невосполнимых материальных ресурсов при эксплуатации, при ремонтах и утилизации продукции после ее физического износа.

Ко второй группе можно отнести показатели расходования природных энергоносителей на всех стадиях и этапах жизненного цикла изделий.

Третья группа показателей включает параметры различных видов загрязнений окружающей среды и ущерба от этих загрязнений на различных стадиях жизненного цикла изделий - от производства и эксплуатации до ликвидации отработавших изделий.

При определении экологических показателей качества новой техники находят относительные значения фактических значений, например, концентрации вредных веществ или уровней вредных (механических, физических и других) воздействий на природную среду к их предельно допустимым значениям. При этом должны соблюдаться следующие условия:

(2.14)

где С 1 , С 2 , С 3 - концентрации соответствующих вредных веществ;

ПДК 1 , ПДК 2 , ПДК n - предельно допустимые концентрации соответствующих вредных веществ.

При оценке уровня качества технических изделий с учетом экологических показателей исходят из требований и конкретных норм по охране окружающей природной среды.

Промышленное изделие, эксплуатация которого приводит к нарушению установленных экологических требований и норм по охране природы, не может быть отнесено к продукции, превосходящей мировой уровень или соответствующей ему, независимо от того, соответствуют ли другие показатели качества такой оценке.

Показатели безопасности. Данная группа показателей качества продукции характеризует безопасность обслуживающего персонала, пассажиров - для транспортных средств, а также окружающих людей в процессе эксплуатации, хранения и утилизация технических изделий.

Безопасность - это такое состояние условий труда, при котором с определенной вероятностью исключена опасность, т.е. возможность повреждения (травмы, увечья) или ухудшения (профессиональные заболевания) здоровья человека.

В качестве показателей безопасности могут быть приняты:

Вероятность безопасной работы человека в течение определенного времени;

Коэффициент безопасности;

Качественным показателем безопасности может быть наличие средств индивидуальной защиты человека, ремней безопасности и т.п.

Оценку уровня качества изделия производят с учетом показателей безопасности и их норм.

При оценке безопасности первоначально определяют Х ст - степень вредности (опасности) неблагоприятного фактора и (или) тяжести работ с техническим изделием. Степень вредности Х ст оценивают в баллах в соответствии с нормами.

Однако многие вредные и опасные факторы воздействуют на человека при его работе не всегда. В этом случае установленные показатели степени вредности факторов, корректируются по формуле:

где Х ст - степень вредности (опасности) фактора,

Т - отношение времени действия данного фактора к продолжительности рабочей смены.

Если время действия какого-либо отрицательного фактора составляет более 90% продолжительности рабочей смены, то его Т= 1.

В ряде случаев степень безопасности технических изделий оценивают по коэффициентам безопасности К б.

Коэффициент безопасности K б определяется отношением количества показателей (требований) безопасности N б соответствующих нормативно-технической документации по безопасности труда с оцениваемым изделием, к общему количеству номенклатуры показа­телей безопасности N о относящихся к данному изделию:

Если коэффициент безопасности меньше единицы, то необходимо осуществить управленческие и технические мероприятия по приведению изделия в нормативно безопасное состояние.

Что уровень безопасности У б изделия количественно оценивается как отношение коэффициентов безопасности оцениваемого и базового образцов:

Однако более точная оценка уровня безопасности изделия может быть осуществлена дифференциальным или комплексным методом с учетом всех единичных показателей безопасности и их значимости.

Надежность это свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования. Это качество, простирающееся во времени . Поэтому понятие надежности близко к понятию качества, а потому проблемы управления качеством непосредственно отражаются в представлении о надежности.

Надежность – это объективное свойство изделия, надежность можно измерить. Для измерения надежности введены понятия "отказ", "вероятность безотказной работы", "интенсивность отказов" и др. Понятия об отказе и безотказности являются одними из основных в теории надежности. Обычно под безотказностью понимают свойство изделий сохранять работоспособность в течение длительного времени. Отказ – это полная или частичная утрата изделием работоспособности.

Американские авторы Д. Ллойд и М. Липов в книге "Надежность" пишут : "Надежность сказывается на стоимости, на временных затратах, психологически – в виде неудобств, а в определенных случаях грозит также безопасности людей и нации. Обычно потери за счет ненадежности представляют собой не только стоимость выходящего из строя агрегата, но также и стоимость связанного с ним оборудования, которое портится или разрушается в результате отказа... Классическим примером психологического эффекта ненадежности являются печальной памяти спутники "Авангард". Соединенные Штаты, остро переживая успехи России, запустившей "Спутник-1", попытались вступить в соревнование, используя для этой цели почти нс испытанную ракету, которой и пришлось работать почти на пределе своих возможностей. Неудачи и последовавшие за этим уныние и потеря престижа были очень серьезны".

У американского писателя, поэта и ученого XIX в. Оливера Холмса есть стихотворение "Шедевр священника, или Замечательная одноконная коляска". В нем говорится о священнике, который построил коляску, замечательную тем, что все ее части имели абсолютно одинаковую прочность. Эта коляска прослужила ровно 100 лет и развалилась прямо по дороге. Все детали сломались одновременно .

Изделие, которое бы разрушалось таким образом, – это мечта любого инженера и специалиста по управлению качеством. Но реальные механизмы разрушаются случайным образом и в случайное время. Поэтому для оценки надежности применяют статистические методы и вероятностный аппарат математики. Вероятность безотказной работы – это вероятность того, что в данном интервале времени или в пределах заданной наработки не произойдет отказа изделия.

Для оценки надежности существует много числовых характеристик. Например, коэффициент готовности – это вероятность того, что изделие окажется работоспособным в заданные или случайные моменты, – время, в течение которого изделие работоспособно, отнесенное ко времени его функционирования.

потребителем подразумевает время, в течение которого товар с гарантией производителя сохраняет свои параметры качества, ожидаемые потребителем, и потому это время обычно называют гарантированным сроком службы продукта.

Гарантированный производителем срок службы продукта называют долговечностью товара. Долговечность зависит от возможностей ремонта, после которого его параметры качества могут быть восстановлены, т.е. от ремонтопригодности продукта.

По реальному сроку службы потребитель судит в основном о качестве приобретенного им товара, что сказывается в дальнейшем на его отношении к соответствующему производителю и в конечном итоге на имидже этого производителя в глазах потребителя .

Наибольшее распространение в исследованиях надежности получил показатель интенсивность отказов (λ ):

где n – число выбывших из строя изделий; N – общее число

изделий; – среднее время испытаний.

Среднее время испытаний определяется по формуле

где – число изделий в испытательной группе; – продолжительность испытания данной группы.

Если количество изделий, выбывших из строя, превышает 5-10%, то в расчетвводятся коррективы:

(2.3)

где – количество отказавших изделий в данной группе;

– количество отказов за одно и то же время испытаний;

Продолжительность испытаний для вывода изделия из строя.

Для расчета средней интенсивности отказов важно выбрать правильный интервал времени, так как обычно плотность отказов меняется во времени.

ПРИМЕР 2.1

При испытании некоторой детали электронной аппаратуры λ может определяться через 1000–2000 ч. Проводится испытание 4 групп по 250 изделий в течение 2000 ч.

Результаты испытаний таковы:

Рассчитаем :

Всего за время испытаний вышло из строя 20 изделий (7 + 5 + + 4 + 4).

Детали и узлы могут выходить из строя из-за дефектов производства и по другим причинам.

При постоянном уровне частоты отказов за единицу времени распределение вероятностей промежутков безотказной работы выражается показательным законом распределения эксплуатационной долговечности.

Основными параметрами качества для изделий являются:

  • – функциональные характеристики – соответствие изделия назначению;
  • – надежность – количество ремонтопригодных отказов за срок службы;
  • – долговечность (срок службы) – показатель, связанный с надежностью;
  • – бездефектность – количество обнаруженных потребителем дефектов.

Надежность представляет собой понятие, связанное, прежде всего, с техникой. Его можно трактовать как безотказ -

ностъ, способность выполнять определенную задачу или как вероятность выполнения определенной функции или функций в течение определенного времени и в определенных условиях .

Как техническое понятие "надежность" представляет собой вероятность (в математическом смысле) удовлетворительного выполнения определенной функции. Поскольку надежность представляет собой вероятность, для ее оценки применяются статистические характеристики. Результаты измерения надежности должны включать данные об объеме выборок, о доверительных границах, о процедурах выборочного исследования и др.

В технике применяется также понятие "удовлетворительное выполнение". Точное определение этого понятия связано с определением его противоположности – "неудовлетворительного выполнения" или "отказа".

Общему понятию "надежности" противостоит понятие "собственно надежность" образца оборудования, которая представляет собой вероятность безотказной работы в соответствии с заданными техническими условиями при установленных проверочных испытаниях в течение требуемого промежутка времени. При испытаниях надежности измеряется собственно надежность. Она представляет но существу "операционную надежность" оборудования и является следствием двух факторов: собственно надежности и эксплуатационной надежности. Эксплуатационная надежность, в свою очередь, обусловлена соответствием аппаратуры ее использованию, порядком и способом оперативного применения и обслуживания, квалификацией персонала, возможностью ремонта различных деталей, факторами окружающей среды и др.

На каждую характеристику, подлежащую измерению, в технических условиях задается допуск, нарушение которого рассматривается как "отказ". Допуск, определяющий отказ, должен быть оптимальным с необходимой надбавкой на износ деталей, т.е. он должен быть шире нормального заводского допуска. Поэтому заводские допуски устанавливают с учетом того, что детали со временем изнашиваются.

Охарактеризуем основные понятия, связанные с надежностью.

  • 1. Исправность – состояние изделия, при котором оно в данный момент времени соответствует всем требованиям, установленным как в отношении основных параметров, характеризующих нормальное выполнение заданных функций, так и в отношении второстепенных параметров, характеризующих удобства эксплуатации, внешний вид и т.п.
  • 2. Неисправность состояние изделия, при котором оно в данный момент времени не соответствует хотя бы одному из требований, характеризующих нормальное выполнение заданных функций.
  • 3. Работоспособность состояние изделия, при котором оно в данный момент времени соответствует всем требованиям, установленным в отношении основных параметров, характеризующих нормальное выполнение заданных функций.
  • 4. Отказ – событие, заключающееся в полной или частичной утрате изделием его работоспособности.
  • 5. Полный отказ – отказ, до устранения которого использование изделия по назначению становится невозможным.
  • 6. Частичный отказ отказ, до устранения которого остается возможность частичного использования изделия.
  • 7. Безотказность свойство изделия непрерывно сохранять работоспособность в течение некоторого интервала времени.
  • 8. Долговечность свойство изделия сохранять работоспособность (с возможными перерывами для технического обслуживания и ремонта) до разрушения или другого предельного состояния. Предельное состояние может устанавливаться по изменениям параметров, по условиям безопасности и т.п.
  • 9. Ремонтопригодность свойство изделия, выражающееся в его приспособленности к проведению операций технического обслуживания и ремонта, т.е. к предупреждению, обнаружению и устранению неисправностей и отказов.
  • 10. Надежность (в широком смысле ) свойство изделия, обусловленное безотказностью, долговечностью и ремонтопригодностью самого изделия и его частей и обеспечива

ющее сохранение эксплуатационных показателей изделия в заданных условиях.

  • 11. Восстанавливаемость – свойство изделия восстанавливать начальные значения параметров в результате устранения отказов и неисправностей, а также восстанавливать технический ресурс в результате проведения ремонтов.
  • 12. Сохраняемость – свойство изделия сохранять исправность и надежность в определенных условиях и транспортировки.

Для некоторых изделий, относительно несложных по конструкции, понятие "отказа" можно ввести совершенно четко. Например, электролампочка или горит, или не горит.

На практике иногда обращают особое внимание на совершенствование основных узлов изделия, упуская из виду, что причиной ненадежности и последующей аварии могут быть конструкционные узлы, которые носят вспомогательный характер.

Чтобы измерить (оценить ) надежность, необходимо испытать аппарат, который описывал бы случайные события или случайные процессы. Речь идет о теории вероятностей и математических дисциплинах. За основной количественный показатель надежности принимают вероятность безотказной работы изделия в течение заданного промежутка времени.

Вероятность безотказной работы – это вероятность того, что в данном интервале времени или в пределах заданной наработки нс произойдет отказа изделий. С введением этого понятия появляется возможность измерять надежность и сравнивать надежность изделия по этому показателю. Вероятность безотказной работы одного и того же изделия не одинакова в разные моменты его эксплуатации.

Для оценки надежности существует множество характеристик, в частности: вероятность безотказной работы; коэффициент готовности (вероятность того, что изделие окажется работоспособным в заданный или случайный момент); коэффициент использования времени (время, в течение которого изделие работоспособно, отнесенное ко времени его функционирования).

Время безотказной эксплуатации товара потребителем подразумевает время, в течение которого товар с гарантией производителя сохраняет свои параметры качества, ожидаемые потребителем, и поэтому это время обычно называют гарантированным сроком службы изделия.

Гарантированный срок службы товара, как правило, меньше его действительного срока службы, который характеризуется долговечностью товара.

Долговечность зависит от возможностей ремонта, после которого параметры качества товара восстановлены, т.е. зависит от ремонтопригодности. Долговечность характеризует реальный срок службы товара. По реальному сроку службы потребитель судит о качестве приобретаемого товара, что сказывается в дальнейшем на его отношении к производителю и в конечном итоге на имидже этого производителя в глазах потребителя.

В то же время гарантированный срок службы товара имеет существенное значение в момент его приобретения по сравнению с аналогичным продуктом конкурентов, а неукоснительность последующего выполнения всех предварительно оговоренных условий, гарантий при приобретении товара определяет отношение потребителя к надежности не только поставщика (продавца), по и производителя.

Если в течение гарантированного срока службы значение параметров качества не соответствует ожиданиям потребителя, которые гарантирует ему производитель, то ответственность за это несет производитель товара (поставщик), который должен за свой счет произвести ремонт, а в случае невозможности ремонта заменить некачественный товар на качественный.

Производитель должен гарантировать качество товара как во время его хранения, так и во время его эксплуатации .

Для предвидения отказов в будущем необходимы фактические данные о частоте отказов за время использования оборудования по назначению.

При обработке информации применяется величина, обратная частости отказов "среднее время между отказами".

Для исследования надежности применяются достаточно сложные аналитические методики. Например, при исследовании электронных систем инженер выбирает ряд ключевых характеристик, выбирает наиболее важную из них, выбирает варианты действий и один из этих вариантов, изучает условия работы и оценивает их.

В связи с высокими темпами современного научно-технического прогресса важно выбрать оптимальный момент для перехода от научных исследований и подготовительных работ к производству продукции. В условиях конкуренции удачно выбранное время запуска в производство является важным фактором, действующим в двух направлениях: "слишком ранний" запуск в производство может привести к таким же отрицательным последствия, как и "слишком поздний".

Причинами изготовления ненадежной продукции могут быть:

  • – отсутствие регулярной проверки соответствия стандартам;
  • – ошибки в применении материалов и неправильный контроль материалов в ходе производства;
  • – неправильный учет и отчетность по контролю, включая информацию об усовершенствовании технологии;
  • – нс отвечающие стандартам схемы выборочного контроля;
  • – отсутствие испытаний материалов на их соответствие;
  • – невыполнение стандартов по приемочным испытаниям;
  • – отсутствие инструктивных материалов и указаний по проведению контроля;
  • – нерегулярное использование отчетов по контролю для усовершенствования технологического процесса.

Математические модели, применяемые для количественных оценок надежности, зависят от "типа" надежности. Современная теория выделяет три ее типа.

  • 1. Надежность мгновенного действия (например, плавких предохранителей).
  • 2. Надежность при нормальной эксплуатационной долговечности (например, вычислительной техники). В исследованиях нормальной эксплуатационной надежности в качестве единицы измерения используют "среднее время между отказами". Рекомендуемый в практике диапазон от 100 до 2000 ч.
  • 3. Чрезвычайно продолжительная эксплуатационная надежность (например, космические корабли). Если требования к сроку службы превышают 10 лет, их относят к чрезвычайно продолжительной эксплуатационной надежности.

При нормальной эксплуатационной надежности техническое предсказание надежности может быть теоретическим, эмпирическим и экспериментальным.

При теоретических средствах испытания разрабатывают схему данной операции и проверяют соответствие схемы с помощью математической модели. Если схема нс соответствует операции, вносятся уточнения до тех пор, пока соответствие не будет достигнуто. Это так называемое научное исследование.

Эмпирический подход заключается в выполнении необходимых измерений в отношении фактически выпускаемой продукции и выводах о надежности.

Экспериментальный подход занимает промежуточное положение между теоретическим и эмпирическим. При экспериментальном подходе используют и теорию, и измерения. При этом широко применяют методы математического моделирования процессов, создавая на этой основе экспериментальные данные. После этого информация подвергается статистическому анализу с применением современных средств вычислительной техники, что обеспечивает надежность и достоверность выводов.

Любому виду испытания предшествует план эксперимента.

Поскольку надежность является вероятностной характеристикой, количественные оценки используются для оценки "средней надежности", рассчитанной на основе выборок из всей совокупности, а также для предсказания будущей надежности. Надежность исследуется с помощью статистических методов и поддается уточнению с их помощью.

Следует отметить, что продолжительность службы не является единственным показателем эксплуатационных свойств.

В ряде случаев используются другие показатели (километраж пробега, продолжительность активного использования и др.); продолжительность службы изделий зависит как от условий изготовления, так и условий эксплуатации.

Надежность многих изделий может быть выявлена в условиях их потребления. Научно обоснованная система наблюдения за эксплуатацией изделий позволяет выявить дефекты, обусловленные нарушениями технологического процесса у производителя.

Производитель должен:

применять статистический контроль качества;

  • – проверять через определенные интервалы состояние управляемости процессов;
  • – стремиться к повышению качества и надежности выпускаемого оборудования;
  • – обеспечить правильное понимание требований заказчика и удовлетворения их.

Анализ различных определений надежности, имеющихся в литературе, приводит к обобщенному выводу, что под надежностью понимают безотказную работу изделий при регламентированных условиях эксплуатации в течение определенного периода времени.

Выборочный контроль. Характерной особенностью контроля при исследовании надежности является то, что возможности составления выборок ограничены малочисленностью единиц аппаратуры на ранних стадиях ее освоения. Как правило, число единиц для испытания выбирает заказчик. При этом уровень достоверности результатов испытания варьирует в зависимости от числа проверенных единиц. Такое же влияние оказывает продолжительность предполагаемого оперативного времени и степень износа образцов при испытании.

На практике составление выборок для испытания надежности производят в соответствии с планом, который вначале (а затем каждый раз, когда попавшее в выборку изделие характеризуется пониженным средним временем безотказной работы) предусматривает 10%-ный риск потребителя при уровне приемлемого качества, соответствующем 10% единиц, с надежностью ниже нормы. Отметим некоторое различие между статистическим контролем качества и выборочными проверками в связи с техническим обеспечением надежности. В последнем случае кроме вопросов представительности выборки возникает вопрос о необходимом времени испытаний.

Естественно, стопроцентное испытание партий до полного износа образцов невозможно. Поэтому схемы выборочного контроля, применяемые при изучении надежности, предусматривают текущую выборочную проверку выпускаемой продукции с ослабленным режимом контроля до тех пор, пока не будет обнаружена продукция с характеристиками ниже нормы. Иными словами, ослабленная процедура контроля продолжается до тех пор, пока в выборке не появится дефектный экземпляр. При обнаружении единицы выпускаемой продукции с пониженной против нормы характеристикой восстанавливается нормальный режим контроля, который может перейти в режим усиленного контроля в зависимости от количества брака, выявленного в выборке. Как правило, подобные планы выборочного контроля разрабатываются с учетом заданного среднего времени безотказной работы и размеров ежемесячного выпуска продукции.

При исследовании надежности для решения вопроса о приемке или забраковывании партии нередко используют метод последовательного анализа. Прежде всего выявляют, что среднее время безотказной работы при заданных условиях находится на уровне установленного минимума или превышает его. Такие испытания планируются после того, как предназначенные к испытанию образцы и испытательная аппаратура прошли надлежащую проверку. Испытания прекращаются, как только принимается решение о приемке. Но они не прекращаются, если принято решение забраковать партию. В последнем случае они продолжаются в соответствии с точно определенным планом статистического контроля.

Под отказом понимают появление первых признаков неправильной работы или неполадки в работе аппаратуры. Каждый отказ характеризуется определенным временем его возникновения.

Результаты исследования надежности имеют значение при сертификации продукции и систем качества Мазур И. И., Шапиро В. Д. Управление качеством: учеб. пособие. М.: Омега-Л, 2011.

Оценка безопасности зданий и сооружений.

Техническое освидетельствование сооружений позволяет установить их надежность на момент обследования. Однако для заключения о дальнейшей эксплуатации, установления срока службы и ремонта сооружения необходимо знать изменение этих свойств с течением времени. Например, если с течением времени бетонные конструкции сохраняют свои прочностные характеристики, то многие новые синтетические материалы зачастую теряют свои строительные свойства в период 10-20 лет, что не может быть приемлемым для капитальных зданий и сооружений.

При эксплуатации сооружений для оценки технического состояния конструкций широко применяют визуальные обследования. Для этой цели существуют методические рекомендации и табличные данные для оценки результатов наблюдений, по которым устанавливается надежность обследуемых конструкций по внешним признакам их состояния и оценка повреждений. Более точные данные получают при инструментальных измерениях различными приборами на основе физических, радиологических, электромагнитных и других воздействий.

Как показали наблюдения, в процессе эксплуатации конструкций происходит циклическое изменение их надежности, что связывают с изменчивостью нагрузок и несущей способности вследствие различных повреждений.

Повреждения в конструкции могут быть двух видов в зависимости от причин их возникновения: от силовых воздействий и от воздействия внешней среды (температурные перепады, коррозионные процессы, микробиологическое воздействие и т.д.). Последний вид повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность.

Особое внимание должно быть уделено опасности террористических воздействий, ставшей актуальной в последнее время. Степень зашиты от террористических и других аварийных воздействий и экономическое обоснование мер зашиты должны определяться в зависимости от значимости этих объектов для жизнедеятельности города (объекты управления и т.п.).

Прогнозирование аварийных ситуаций

Анализ экстремальных ситуаций в строительной практике показал, что аварии прямо или косвенно связаны с нарушением требований норм и правил проектирования и технологии строительства зданий и сооружений.

Соблюдение действующих норм и правил гарантирует надежность строительных объектов при различных природных воздействиях и обеспечивает безопасность человека в процессе их квалифицированной эксплуатации. Вероятность повреждений этих объектов обычно не превышает 2,4 · 10-6, что является приемлемым из условий экономической целесообразности.

Оценка риска в условиях прогноза ЧС

Исследование причин аварий послужило основанием для оценки возможности возникновения условий, влияющих на надежность сооружения. К числу этих условий относятся надежность проектных решений, качество строительства и эксплуатации.

Недостаточная надежность проекта может возникнуть вследствие:

  • 1) несоответствия принятой расчетной модели действительной работе конструкций из-за отсутствия или неполноты использования требований норм и стандартов на проектирование, неясности расчетных схем, неправильного определения нагрузок и условий эксплуатации объекта, а также неверного учета сопротивляемости несущих и ограждающих конструкций временным и случайным воздействиям;
  • 2) недостаточной проверки и неверной инженерной оценки принимаемого конструктивного решения в реальных условиях (отсутствие опыта эксплуатации проектируемых зданий и сооружений, значительного отличия размеров проектируемого объекта и нагрузок в сравнении с построенными ранее аналогичными сооружениями и т.д.);
  • 3) нарушения строительных норм и правил при выполнении проектирования в части: полноты и достоверности инженерно-геологических исследований, учета агрессивности внешней среды, ошибки в определении нагрузок и воздействий, неверных допусков на изготовление конструкций и изделий, низкое качество материалов, нарушения методов строительства и правил эксплуатации и др.;
  • 4) допущенных ошибок из-за отсутствия достаточного опыта и квалификации проектировщиков, недостатка времени или средств на детальное проектирование.

Некачественное строительство объектов может возникнуть вследствие:

  • - применения материалов и конструкций, не соответствующих проекту;
  • - низкого качества строительно-монтажных работ;
  • - использования необычных или неапробированных методов возведения;
  • - плохого контроля за качеством исполнении строительства, неудовлетворительного взаимодействия проектировщиков и строителей;
  • - низкой квалификации производственного персонала или их частой смены;
  • - неудовлетворительной обстановки на стройке: недостаток времени, средств, плохие взаимоотношения персонала;
  • - отступлений от строительных норм и правил строительной практики при строительстве сооружения, отступлений от первоначального проекта;

Некачественная эксплуатация может возникнуть вследствие:

  • - превышения нагрузок над расчетными проектными величинами;
  • - отсутствия контроля за состоянием сооружения и эксплуатации сооружения с неустраненными дефектами;
  • - отступлений от правил эксплуатации, использования сооружения не по назначению.

Анализ аварий показал, что при несоблюдении любого из указанных условий возможна авария строительного объекта.

Определение вероятности аварии производится на основании анализа объемно-планировочных и конструктивных решений, влияющих на надежность сооружений, использования экспертных оценок, а также расчетных данных или материалов натурных обследований.

Опросная анкета, на которую анонимно отвечают эксперты, содержит ряд оценочных условий, каждое из которых имеет свой удельный вес, с общей суммой всех условий, равной 1 (см. прил. 3). В этом приложении приведены типовые условия анализа надежности сооружения с учетом особенностей проектирования и условий эксплуатации.

В конкретных условиях, при необходимости, может быть проведен анализ надежности проекта с учетом дополнительных требований, а число условий может быть увеличено или изменено.

Каждое условие оценивается по балльной шкале и имеет пять вариантов ответа: 1 (неприемлемо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

Условную надежность здания или сооружения β определяют по формуле

где Р i - удельная оценка надежности, получаемая умножением удельного веса условия на оценку в баллах.

Полученные значения для сооружения сравнивают со шкалой оценок надежности (табл. 6.1).

Таблица 6.1. Шкала оценок надежности и вероятности аварии сооружений по экспертным опенкам

Хотя определение подверженности сооружений аварии по приведенной методике может быть выполнено довольно приблизительно, однако преимуществом указанной методики является меньшая ее зависимость от субъективных оценок.

Для более достоверной оценки надежности сооружения и определения возможных аварийных ситуаций осуществляется проверка несколькими независимыми экспертами.

В случае неблагоприятного прогноза назначают дополнительные меры по проверке достоверности исходных материалов для проектирования, качества проектных решений, процессов строительства и эксплуатации с целью выявления и устранения причин возможного снижения степени надежности объекта.

Помимо экспертных оценок надежность проекта сооружения может быть установлена из анализа сооружения как конструктивной системы, состоящей из отдельных конструкций, связанных между собой в определенной последовательности и находящихся во взаимодействии с различными событиями.

Опыт строительства показал, что различные конструктивные системы сооружений одинакового назначения могут обладать различной надежностью, а аварии случаются тогда, когда один или несколько совместных отказов в составе системы приводит к опасной ситуации.

Решение сложной проблемы установления отказа всей системы производится методом ее упрощения путем построения так называемого логического древа отказов.

Древо отказов является графическим представлением взаимосвязей между исходными отказами отдельных элементов системы и событиями, приводящими к возникновению различных аварийных ситуаций, соединенных логическими знаками "и", "или".

Исходными отказами являются события, для которых имеются данные о вероятности их возникновения. Обычно это отказы элементов системы: разрушение конструкций и узлов соединения конструкций, различные инициирующие события (ошибки персонала при эксплуатации, случайные повреждения и т.п.).

Установление надежности сооружения начинают с предварительного анализа опасностей, которые затем используют при построении древа отказов.

Анализ проводят на основе изучения процесса работы и эксплуатации конструктивной системы, детального рассмотрения воздействий окружающей среды, существующих данных по отказам аналогичных сооружений.

Прежде всего определяют, что является отказом системы, и вводят необходимые ограничения на анализ. Например, устанавливают необходимость учета интенсивности и повторяемости землетрясений, аварий оборудования, рассмотрения только начального отказа сооружения (отказа в начальный срок эксплуатации) или отказа в течение всего срока службы и т.п.

Затем выявляют элементы системы, которые могут вызвать опасные состояния, например, конструкций, узлов соединений, грунтов оснований и фундаментов сооружения, внешние инициирующие события и т.д. При этом ставят вопрос, что будет с системой, если произойдет отказ какого-либо из элемента.

Для того чтобы получить количественную оценку надежности с помощью древа отказов, нужно иметь данные об исходных отказах. Эти данные могут быть получены на основе опыта эксплуатации отдельных строительных объектов, экспериментов и экспертных оценок специалистов.

Построение древа отказов производят с соблюдением определенных правил. Вершина древа обозначает конечное событие. Абстрактные события заменяют на менее абстрактные. Например, событие "авария нефтяного резервуара" заменяют на менее абстрактное событие "разрушение резервуара".

Сложные события разделяют на более элементарные. Например, "отказ резервуара" (рис. 6.1), который может произойти в течение срока его службы, разделяют на отказ в стадии испытания и отказы в первые и последующие 10 лет эксплуатации. Такое разделение вызвано различными причинами отказов: начальной надежностью сооружения и накоплением повреждений в результате длительной эксплуатации.

Рис. 6.1. Древо отказов стального нефтяного резервуара при эксплуатации

При построении древа отказов с целью упрощения обычно не включают события с очень малой вероятностью.

Количественным показателем отказа системы является вероятность (Q) возникновения одного отказа в течение принятого срока эксплуатации. Надежность системы (Р ) определяется выражением

Если система состоит из i элементов, соединенных с помощью знака "или", ее отказ будет определяться как

где q, - вероятность отказа i-го элемента системы.

При малой величине q i формулу (6.3) можно приближенно выразить как

Для системы или подсистемы из i элементов, соединенных знаком "и", отказ будет

Таким образом, исследование надежности конструктивных систем позволяет решить несколько важных для практики задач: качественно оценивать надежность запроектированного строительного объекта и в случае повышенной опасности осуществлять мероприятия для ее повышения, определять при проектировании относительную надежность сооружения для различных вариантов конструктивных схем, количественно оценивать надежность сооружений и безопасность окружающей среды.

Определение ожидаемого ущерба и дестабилизирующих факторов

Ожидаемый ущерб от природных и техногенных воздействий зависит от двух основных дестабилизирующих факторов:

  • - интенсивность и частота природных и техногенных воздействий на здания и сооружения;
  • - инженерные (количественные) знания о сопротивляемости или защищенности строительных объектов и селитебных территорий от разрушительных воздействий техногенных и природных явлений.

Алгоритм расчетов и оценки экономических последствий от ожидаемых воздействий следующий.

Для природных воздействий:

  • - определяют научно обоснованную возможность возникновения разрушительных природных явлений на рассматриваемой территории, способных нанести вред инженерным сооружениям (транспортные коммуникации, объекты гидротехники и энергетики), промышленным и гражданским объектам;
  • - оценивают вероятность возникновения каждого вида природных воздействий, их интенсивность и частоту повторяемости;
  • - определяют состояние грунтовой среды и устанавливают прочностные характеристики несущих и ограждающих конструкций;
  • - выполняют комплекс аналитических работ и инженерных расчетов по определению надежности работы фундаментов и сопротивляемости строительных конструкций нагрузкам, возникающим при природных и техногенных воздействиях за расчетный период эксплуатации;
  • - выполняют работы по усилению конструкций зданий и сооружений, если в этом есть необходимость, по изменению схем транспортных коммуникаций (например, в лавиноопасных районах или на селевых участках) и другие необходимые решения.

Для техногенных воздействий:

  • - определяют возможность возникновения техногенных аварий и вероятность их возникновения;
  • - оценивают влияние техногенных аварий на окружающую среду и безопасность проживания населения;
  • - рассматривают возможность предотвращения или предупреждения техногенных воздействий;
  • - выполняют работы по реконструкции и модернизации объекта для повышения уровня безопасности и надежности потенциально опасных объектов;
  • - разрабатывают мероприятия по локализации воздействия аварии на окружающую среду и для защиты населения и производственного персонала.

По данным ожидаемых воздействий и определению возможных повреждений и разрушений строительных объектов и наносимому вреду окружающей среде подсчитываются расчетные значения ущерба и убытков, как в сфере экономических потерь, так и в вопросах здоровья и жизнедеятельности населения. При этом рекомендации и выводы могут быть восстановительного характера либо реконструкции и модернизации, а также кардинального изменения структуры экономики района и даже переселения населения из районов с серьезными опасностями и ущербами, которые экономически развивать нецелесообразно (например, в районах сильных землетрясений, постоянных наводнений и сходов лавин). В каждом конкретном случае должны выполняться квалифицированный анализ и серьезное общественное обсуждение.

Разработка мероприятий по повышению надежности строительных объектов и жизнедеятельности населения

Для обеспечения надежности строительных объектов должны быть определены прочностные характеристики зданий и сооружений и выполнены сопоставления их со всеми видами нагрузок и воздействий, которые могут возникнуть за расчетный период эксплуатации.

При обнаружении недостаточной устойчивости и несущей способности строительных объектов по отношению к действующим нагрузкам и воздействиям должны выполняться следующие виды работ:

  • - обследуют с помощью приборов и инструментов все объекты, надежность которых вызывает сомнения или опасения;
  • - определяют прочностные характеристики несущих конструкций и оценивают состояние грунтов оснований с учетом их поведения при вибрационных и других нагрузках, способных снизить устойчивость грунтовой среды или вызвать повреждения фундаментов;
  • - разрабатывают проект усиления или реконструкции, исключающий повреждения или разрушения объекта либо потерю его общей устойчивости при возможных и ожидаемых нагрузках и воздействиях в чрезвычайных ситуациях;
  • - в соответствии с разработанным проектом выполняют необходимый комплекс усиления или реконструкции строительного объекта;
  • - осуществляют строгий контроль качества исполнения строительно-монтажных работ с учетом повышенных требований, предусмотренных нормами и стандартами для районов с высокими нагрузками и воздействиями;
  • - при выполнении строительно-монтажных работ необходимо требовать сертификат качества на используемые материалы и конструкции с гарантированными сроками долговечности в течение расчетного периода эксплуатации объектов;
  • - осуществляется согласно нормам и стандартам приемка в эксплуатацию усиленного либо реконструированного объекта в соответствии с материалами проекта и данными фактического исполнения;
  • - разрабатывают рекомендации по эксплуатации зданий и сооружений с учетом обеспечения их надежности и долговечности при максимальных расчетных нагрузках и воздействиях в течение нормативного периода.


Поделиться