Диагностика технического состояния оборудования. Понятие технической диагностики Методы диагностики технологического оборудования

  • 3.1. Сменный, суточный и годовой режимы
  • Работы оборудования
  • 3.2. Производительность и норма выработки машин
  • 3.3. Стоимость эксплуатации оборудования
  • 3.4. Анализ эффективности работы оборудования
  • 4. Надежность оборудования и ее изменение при эксплуатации
  • 4.1. Показатели надежности оборудования
  • 4.2. Общие принципы сбора и обработки
  • Статистической информации о надежности
  • Оборудования при эксплуатации
  • Сбор информации об отказах оборудования
  • Обработка эксплуатационной информации по отказам
  • Оценка надежности оборудования
  • 4.3. Поддержание надежности оборудования при эксплуатации
  • На этапе эксплуатации оборудования
  • 5. Причины отказов оборудования при эксплуатации
  • 5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
  • 5.2. Деформация и изломы элементов оборудования
  • 5.3. Износ элементов оборудования
  • 5.4. Коррозионные разрушения элементов оборудования
  • 5.5. Сорбционные разрушения элементов оборудования
  • 5.6. Коррозионно-механические разрушения элементов оборудования
  • 5.7. Сорбционно-механические разрушения элементов оборудования
  • 5.8. Образование на поверхностях оборудования отложений твердых веществ
  • 6. Организация технического обслуживания, ремонта, хранения и списания оборудования
  • 6.1. Система технического обслуживания и ремонта оборудования
  • Виды технического обслуживания и ремонта оборудования
  • Стратегии то и р оборудования
  • Организация и планирование то и р оборудования по наработке
  • Организация и планирование то и р оборудования по фактическому техническому состоянию
  • 6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
  • Жидкие смазочные материалы
  • Пластичные смазочные материалы
  • Твердые смазочные материалы
  • Выбор смазочных материалов
  • Способы смазки машин и смазочные устройства
  • Жидкости для гидравлических систем
  • Тормозные и амортизаторные жидкости
  • Использование и хранение смазочных материалов
  • Сбор отработанных масел и их регенерация
  • 6.3. Хранение и консервация оборудования
  • 6.4. Гарантийные сроки и списание оборудования
  • Списание оборудования
  • 7. Диагностика технического состояния оборудования
  • 7.1. Основные принципы технического диагностирования
  • 7.2. Методы и средства технической диагностики
  • Средства диагностики технического состояния оборудования
  • Методы и средства диагностического контроля насосных агрегатов
  • Методы и средства диагностического контроля трубопроводной запорной арматуры
  • 7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
  • 7.4. Методы прогнозирования остаточного ресурса оборудования
  • 8. Технологические основы ремонта оборудования
  • 8.1. Структура производственного процесса ремонта оборудования
  • Индивидуальным методом
  • 8.2. Подготовительные работы для сдачи оборудования в ремонт
  • 8.3. Моечно-очистные работы
  • Состав смывок для очистки поверхности от лакокрасочных покрытий
  • 8.4. Разборка оборудования
  • 8.5. Контрольно-сортировочные работы
  • 8.6. Комплектование деталей оборудования
  • 8.7. Балансировка деталей
  • 8.8. Сборка оборудования
  • 8.9. Приработка и испытание агрегатов и машин
  • 8.10. Окраска оборудования
  • 9 Способы восстановления сопряжений и поверхностей деталей оборудования
  • 9.1. Классификация способов восстановления сопряжений
  • 9.2. Классификация способов восстановления поверхностей деталей
  • 9.3. Выбор рационального способа восстановления поверхностей деталей
  • 10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
  • 10.1. Восстановление поверхностей наплавкой
  • Ручная газовая наплавка
  • Ручная электродуговая наплавка
  • Автоматическая электродуговая наплавка под слоем флюса
  • Автоматическая электродуговая наплавка в среде защитных газов
  • Автоматическая вибродуговая наплавка
  • 10.2. Восстановление поверхностей металлизацией
  • 10.3. Восстановление поверхностей гальваническим наращиванием
  • Электролитическое хромирование
  • Электролитическое осталивание
  • Электролитическое меднение
  • Электролитическое никелирование
  • 10.4. Восстановление поверхностей деталей пластическим деформированием
  • 10.5. Восстановление поверхностей полимерным покрытием
  • Полимерных покрытий:
  • 10.6. Восстановление поверхностей механической обработкой
  • 10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
  • Соединение деталей пайкой
  • Склеивание деталей
  • 11 Типовые технологические процессы ремонта деталей
  • 11.1. Ремонт деталей типа валов
  • 11.2. Ремонт деталей типа втулок
  • 11.3. Ремонт деталей типа дисков
  • Ремонт зубчатых колес
  • Ремонт цепных колес
  • 11.4. Ремонт корпусных деталей
  • Ремонтных деталей:
  • Ремонт корпуса вертлюга
  • Ремонтных деталей:
  • Ремонт корпуса крейцкопфа бурового насоса
  • Ремонт клапанных коробок буровых насосов
  • Дополнительных ремонтных деталей:
  • Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
  • Ремонт корпуса турбобура
  • Способом замены части детали:
  • Средства диагностики технического состояния оборудования

    Средства диагностики технического состояния оборудования служат для фиксирования и измерения величины диагностических признаков (параметров). Для этого применяют приборы, приспособления и стенды сообразно характеру диагностических признаков и методам диагностики.

    Значительное место среди них занимают электроизмерительные приборы (вольтметры, амперметры, осциллографы и др.). Они широко применяются как для непосредственного измерения электрических величин (например, при диагностике систем зажигания и электрооборудования автомобиля), так и для измерения неэлектрических процессов (колебаний, нагрева, давления), преобразованных при помощи соответствующих датчиков в электрические величины.

    При диагностике механизмов наиболее часто используют: датчики сопротивления, концевые, индукционные, оптические и фотоэлектрические датчики, при помощи которых можно измерять зазоры, люфты, относительные перемещения, скорость и частоту вращения проверяемых деталей; термосопротивления, термопары и биметаллические пластины для измерения теплового состояния деталей; пьезоэлектрические и тензометрические датчики для замера колебательных процессов давления, биений, деформаций и др.

    Одно из положительных качеств электроизмерительных приборов - удобство получения информации, а также в перспективе возможность ее анализа при помощи ЭВМ.

    В зависимости от полноты и степени механизации технологических процессов диагностику можно проводить выборочно, только для контроля технического состояния отдельных сборочных единиц, или комплексно для проверки сложных агрегатов, таких как двигатель, и, наконец, комплексно для диагностики машины в целом.

    В первом случае используются для отдельных измерений такие диагностические приборы как стетоскопы, манометры, тахометры, вольтметры, амперметры, секундомеры, термометры и другие переносные приборы. Во втором случае приборы комбинируют в виде передвижных стендов, в третьем случае - ими комплектуют пульты управления стационарных стендов.

    Передвижным комплексным средством диагностики является ходовая диагностическая станция. Она может обеспечивать диагностику технического состояния автомобилей в местах их временного размещения. Компоновка ходовой диагностической станции возможна на базе прицепа достаточно большой грузоподъемности.

    Основными требованиями к средствам диагностики являются: обеспечение достаточной точности замеров, удобство и простота использования при минимальной затрате времени.

    Помимо различных приборов, индикаторов узкого назначения в систему диагностических средств включают комплексы электронной аппаратуры. Эти комплексы могут состоять из датчиков - органов восприятия диагностических признаков, блоков измерительных приборов, блоков обработки информации в соответствии с заданными алгоритмами и, наконец, блоков хранения и выдачи информации в виде запоминающих устройств для преобразования информации в удобный для использования вид.

    Методы и средства диагностического контроля насосных агрегатов

    Диагностический контроль насосных агрегатов осуществляется по параметрическим и виброакустическим критериям, а также по техническому состоянию отдельных сборочных единиц и деталей, оцениваемому при выводе насосов из эксплуатации.

    Для проведения диагностических контролей используется виброаппаратура с возможностью измерения спектральных составляющих вибрации, шумомеры с возможностью измерения октавных составляющих, приборы, позволяющие определять техническое состояние подшипников качения или аналогичные им, но с большими функциональными возможностями отечественного или зарубежного производства.

    Средства контроля вибрации и методы вибродиагностики должны обеспечивать решение следующих задач:

    своевременного обнаружения возникающих дефектов составных частей оборудования и предотвращения его аварийных отказов;

    определения объема ремонтных работ и рационального их планирования;

    корректировки значений межремонтных интервалов и прогнозирования остаточного ресурса составных частей оборудования по его фактическому техническому состоянию;

    проверки работоспособности оборудования после монтажа, модернизации и ремонта, определения оптимальных режимов работы оборудования.

    Насосные агрегаты должны быть оснащены контрольно-сигнальной виброаппаратурой (КСА) с возможностью контроля текущих параметров вибрации, автоматической предупредительной сигнализацией и автоматическим отключением при предельно допустимом значении вибрации.

    До установки контрольно-сигнальных средств контроль и измерение вибрации осуществляются портативными (переносными) средствами виброметрии. Датчики виброаппаратуры устанавливаются на каждой подшипниковой опоре.

    В качестве измеряемого и нормируемого параметра вибрации устанавливается среднее квадратическое значение (СКЗ) виброскорости в рабочей полосе частот 10-1000 Гц.

    Измерение значений виброскорости осуществляется в вертикальном направлении на каждой подшипниковой опоре. При этом регистрируется соответствующий режим работы насоса - подача и давление на входе.

    В табл. 7.3 приведены допустимые уровни вибрации при эксплуатации центробежных насосов.

    Таблица 7.3 Предельно допустимые нормы вибрации при эксплуатации насосов

    Высота оси вращения ротора, мм

    Среднее квадратическое значение

    виброскорости, мм/с

    У насосов, не имеющих выносных подшипниковых опор (насосы со встроенными подшипниками), вибрация измеряется как можно ближе к оси вращения ротора.

    При определении шумовых характеристик измеряются в соответствии с ГОСТ 23941 уровень звука L А (в дБА) в контрольных точках; уровень звукового давления L i , (в дБА) в октавных полосах частот (от 31,5 до 8000 Гц) в контрольных точках.

    Приборы, применяемые для измерения шумовых характеристик, число точек измерения и измерительные расстояния определяются ГОСТ 12.1.028, технической документацией на конкретный шумомер и условиями эксплуатации диагностируемого оборудования. При определении шумовых характеристик (базовых и текущих) должны соблюдаться одинаковые условия измерений (режим работы, количество одновременно работающего оборудования и др.).

    По результатам диагностических контролей принимается решение о выводе насосов в ремонт или их дальнейшего использования по назначению.

    В табл. 7.4 приведены виды диагностических работ и допустимые значения контролируемых параметров для магистральных и подпорных насосов нефтеперекачивающих станций.

    Периодичность, форма и объем регистрируемых параметров должны быть определены нормативными документами с учетом возможной ручной, автоматизированной или смешанной системы регистрации информации.

    Основные причины вибраций насосных агрегатов и характер их проявления представлены в табл. 7.5.

    Основные причины вибрации насосных агрегатов обусловливаются механическими, электромагнитными и гидродинамическими явлениями, а также жесткостью опорных систем.

    Таблица 7.4

    Виды диагностических работ и допустимые значения

    контролируемых виброакустических параметров и значений

    температур для магистральных и подпорных насосов

    Вид диагностических работ

    Контролируемый параметр и

    место измерения

    Допустимое значение параметра

    Оперативный диагностический контроль

    Плановый диагностический контроль

    Неплановый диагностический контроль

    Послеремон-тный диагностический контроль

    СКЗ виброскорости на подшипниковых опорах в вертикальном направлении

    СКЗ виброскорости на лапах корпуса насоса в вертикальном направлении

    Температура подшипников

    СКЗ и спектральные составляющие виброскорости на всех подшипниковых опорах в трех взаимно перпендикулярных направлениях

    СКЗ виброскорости на лапах корпуса насоса, головках анкерных болтов в вертикальном направлении

    Уровень шума

    Температура подшипников

    Вибрации опорно-упорного подшипника или подшипников качения

    Контролируемые параметры, их допустимые значения и место измерения соответствуют плановому диагностическому контролю

    СКЗ виброскорости на подшипниковых опорах в трех взаимно перпендикулярных направлениях

    СКЗ виброскорости на лапах корпуса насоса и головках анкерных болтов в вертикальном направлении

    Вибрация опорно-упорного подшипника или подшипников качения

    Температура подшипников

    Увеличение температуры относительно базового значения на 10 °С

    Увеличение относительно базового значения на 6 дБА

    Увеличение температуры относительно базового значения на 10°С

    Не более 45 дБ

    Не более 4,5 мм/с

    Не более 1 мм/с

    Не более 35 дБ

    Не выше 70°С

    Таблица 7.5 Влияние неисправностей на виброакустический спектр насосных агрегатов

    Причина повышенной вибрации

    Направление

    Причина повышенной вибрации

    Направление

    Дисбаланс вращающихся элементов. Ослабление посадки деталей ротора 1

    Несоосность 2

    Нецилиндричность шейки вала

    Повреждение подшипников качения

    Овальность внутреннего кольца

    Радиальный зазор

    Неуравновешенность, разностенность сепаратора

    Волнистость, гранность шариков

    Дефекты дорожки внутреннего кольца

    Дефекты дорожки внешнего кольца

    Радиальное

    Радиальное и осевое

    Радиальное

    Радиальное и осе вое, обычное с низкой амплитудой

    Неравномерный зазор ротор-статор электродвигателя

    Короткое замыкание обмотки возбуждения синхронного электродвигателя

    «Масляное биение» в подшипнике скольжения

    Неравномерность потока охлаждающего воздуха

    Гидравлический небаланс рабочего колеса

    Неравномерность поля скоростей и вихреобразование в насосе

    Кавитационные явления в насосе

    Неисправность зубчатой муфты 3

    Ослабление жесткости подшипникового узла

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное

    Радиальное, осевое

    Радиальное, горизонтальное

    1 Частая причина высокой вибрации оборудования.

    2 Частая причина вибрации. Осевая вибрация - главный показатель, часто она превышает радиальную.

    3 Для обеих смежных с муфтой подшипниковых опор.

    При проведении измерений необходимо попытаться разделить перечисленные источники повышенной вибрации насосных агрегатов. При наличии повышенной вибрации подшипниковых опор агрегата необходимо проверить жесткость крепления подшипниковых опор к корпусу или раме, жесткость крепления корпуса насоса и рамы двигателя к фундаменту. Повышенная вибрация в горизонтальной плоскости указывает на уменьшение жесткости в горизонтальных направлениях.

    По результатам измерения вибрации для каждой контролируемой точки строится график изменения среднего квадратического значения виброскорости в зависимости от наработки (рис. 7.7). До виброскорости 6,0 мм/с график можно представить прямой линией, проведенной согласно полученным значениям вибрации. Далее график строится по значениям вибрации, соответствующим наработке насосного агрегата после виброскорости 6,0 мм/с. График, построенный после достижения уровня вибрации 6,0 мм/с, как правило, будет располагаться под большим углом к оси абсцисс и позволит оценить время наступления предельно допустимого значения вибрации τ 1 при предельном значении виброскорости 7,1 мм/с или τ 2 - при 11,2 мм/с.

    Для более достоверной оценки технического состояния и остаточного ресурса отдельных деталей или узлов рекомендуется строить также график по основным спектральным составляющим, указывающим возможные дефекты насосных агрегатов.

    В процессе эксплуатации насосного агрегата его техническое состояние меняется из-за износа деталей и узлов. Наиболее распространенной и значимой причиной ухудшения характеристик насоса в процессе эксплуатации является износ деталей щелевого уплотнения рабочего колеса.

    Насосные агрегаты необходимо выводить в ремонт при снижении величины напора насоса от базовых значений на 5-7 %.

    Значение возможного снижения КПД относительно базового значения может уточняться для конкретного типоразмера насоса на основании экономической оценки из условия, что стоимость ремонта, при котором обеспечивается восстановление первоначального КПД, будет выше затрат, вызванных перерасходом электроэнергии из-за снижения КПД насоса.

    Диагностирование состояния насосных агрегатов по параметрическим критериям допускается проводить как на основе данных, полученных по каналам телемеханики, так и на основе контрольных измерений с применением образцовых средств измерений давления, подачи, мощности, частоты вращения ротора насоса, плотности и вязкости перекачиваемой жидкости.

    Измеряемые параметры и средства измерения:

    давление на входе и выходе насосного агрегата измеряется штатными первичными преобразователями давления с точностью 0,6 % при использовании АСУ или образцовыми манометрами класса 0,25 или 0,4;

    подача определяется по узлу учета, по объемам резервуаров с помощью переносных ультразвуковых расходомеров или другими способами;

    мощность, потребляемая насосом, измеряется при помощи штатных первичных преобразователей мощности с точностью не ниже 0,6 %. При установившихся режимах для грубой оценки допускается определять мощность по счетчику потребляемой электроэнергии или вольтметру и амперметру;

    частота вращения ротора замеряется датчиком частоты вращения с точностью 0,5 %;

    плотность и вязкость перекачиваемой жидкости определяются по узлам учета или в химлаборатории.

    Замер параметров проводится только при установившемся (стационарном) режиме перекачки.

    Контроль стационарности режима осуществляется по подаче (при возможности непосредственного измерения) или по давлению на входе или выходе насосного агрегата. Колебания контролируемого параметра не должны превышать ± 3% от среднего значения.

    Параметры измеряются при бескавитационном режиме работы насосного агрегата (контролируются при измерении вибрации и по давлению на входе в насос).

    Значительные расходы на содержание техники, прежде всего, обусловлены низким качеством ее обслуживания и преждевременным ремонтом. Для снижения затрат труда и средств на техническое обслуживание и ремонт необходимо повысить производи­тельность и улучшить качество выполнения этих работ за счет повышения надежности и эксплуатационной технологичности (ремонтопригодности) выпускаемых единиц, развития и лучшего использования производственно-технической базы предприятий, механизации и автоматизации технологических процессов, внедрения средств диагностирования и элементов научной организации труда.

    Под надежностью понимают свойство составных частей машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортирования.

    Надежность в процессе эксплуатации зависит от ряда факторов: характера и объема выполняемых машиной работ; природно-климатических условий; принятой системы технического обслуживания и ремонта техники; качества и наличия нормативно-технической документации и средств технического обслуживания, хранения и транспортирования машин; квалификации обслуживающего персонала.

    Надежность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств:

    1. Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

    2. Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

    3. Ремонтопригодность - свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

    4. Сохраняемость - свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

    В зависимости от объекта надежность может определяться всеми перечисленными свойствами или некоторыми из них. Например, надежность колеса зубчатой передачи, подшипников определяется их долговечностью, а станка - долговечностью, безотказностью и ремонтопригодностью

    Автомобиль - это сложная система, состоящая из тысяч деталей с различными производственными и эксплуатационными допусками. Работа осуществляется в разных условиях, поэтому срок службы однотипных объектов различен – в зависимости от условий эксплуатации, режимов работы и качества элементов. Следовательно, каждую единицу необходимо направлять на ремонт в соответствии с ее фактическим состоянием.

    При индивидуальном обследовании (контроль, диагностирование, прогнозирование) устанавливается Истинное техническое состояние каждого агрегата. Здесь может быть учтено влияние всего многообразия условий работы, квалификации оператора и других факторов, от которых зависит техническое состояние объекта.

    Отсутствие специального контрольно-диагностического оборудования затрудняет обнаружение многих неисправностей. Старыми (преимущественно субъективными) методами можно выявить только значительные и очевидные отказы и отклонения. Стоимость проверки основных систем такими методами примерно на 70-75% выше, чем при использовании современных диагностических методов.

    Метод технического диагностирования - совокупность технологических и организационных правил выполнения операций технического диагностирования.

    Диагностика (от греческого diagnostikós – способный распознавать) – отрасль знаний, исследующая техническое состояние объектов диагностирования (машин, механизмов, оборудования, конструкций и других технических объектов) и проявление технических состояний, разрабатывающая методы их определения, при помощи которых дается заключение (ста­вится диагноз), а также принципы построения и организацию использования систем диагностирования. Когда объектами диагностирования являются объекты технической природы, говорят о технической диагностике.

    Диагностирование – это совокупность методов и средств для определения основных показателей технического состояния отдельных механизмов и машины в целом без их разборки либо при частичной разборке.

    Результатом диагностирования является диагноз - заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

    Достоверность диагностирования – вероятность того, что при диагностировании определяется то техническое состояние, в котором действительно находится объект диагностирования.

    Техническое состояние - совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемая в определенный момент времени признаками и параметрами состояния, установленными технической документацией на этот объект.

    Параметр состояния - физическая величина, характеризующая работоспособность или исправность объекта диагностирования и изменяющаяся в процессе работы.

    Диагностическая операция - часть процесса диагностирования, выполнение которой позволяет определить один или несколько диагностических параметров объекта.

    Технология диагностирования - совокупность методов, параметров и операций диагностирования, выполняемых планомерно и последовательно в соответствии с технологической документацией для получения конечного диагноза.

    На рис. 1показана структура технической диагностики. Она характеризуется двумя взаимопроникающими и взаимосвязанными направлениями: теорией распознавания и теорией контролеспособности. Теория распознавания содержит разделы, связанные с построением алгоритмов распознавания, решающих правил и диагностических моделей. Теория контролеспособности включает разработку средств и методов получения диагностической информации, автоматизированный контроль и поиск неисправностей. Техническую диаг­ностику следует рассматривать как раздел общей теории надежности.

    Диагностирование включает три основных этапа:

    · получение информации о техническом состоянии объекта диагностирования;

    · обработку и анализ полученной информации;

    · постановку диагноза и принятие решения.

    Первый этап заключается в определении параметров состояния объекта, установлении качественных признаков состояния и получении данных о наработке; второй - в обработке и сравнении полученных значений параметров состояния с номинальными, допускаемыми и предельными значениями, а также использовании полученных данных для прогнозирования остаточного ресурса; третий - в анализе результатов прогнозирования и установлении объема и сроков работ по техническому обслуживанию и ремонту составных частей машины.

    Объект диагностирования - изделие и его составные части, подвергаемые диагностированию.

    В технической диагностике рассматриваются следующие объекты.

    Элемент - простейшая при данном рассмотрении составная часть изделия, в задачах надежности может состоять из многих деталей.

    Изделие - единица продукции определенного целевого назначения, рассматриваемая в периоды проектирования, производства, испытаний и эксплуатации.

    Система - совокупность совместно действующих элементов, предназначенная для самостоятельного выполнения заданных функций.

    Понятия элемента, изделия и системы трансформируются в зависимости от поставленной задачи. Например, при установлении его собственной надежности станок рассматривается как система, состоящая из отдельных элементов - механизмов, деталей и т.п., а при изучении надежности технологической линии - как элемент.

    Структура объекта - условная схема его строения, образуемая последовательным расчленением объекта на элементы структуры (составные части, сборочные единицы и т.п.).

    При диагностировании различают рабочие воздействия, поступающие на объект при его функционировании, и тестовые воздействия, которые подаются на объект только для целей диагностирования. Диагностирование, при котором на объект подаются только рабочие воздействия, называется функциональным, а диагностирование, при котором на объект подаются тестовые воздействия,- тестовым техническим диагностированием.

    Совокупность средств, исполнителей и объектов диагностирования, подготовленная к проверке параметров состояния или осуществляющая ее по правилам, установленным соответствующей документацией, называется системой технического диагностирования.

    Диагностирование позволяет: снизить простои машин по техническим неисправностям за счет предупреждения отказов своевременной регулировкой, заменой или ремонтом отдельных механизмов и агрегатов; ликвидировать ненужные разборки отдельных механизмов и агрегатов и снизить скорость изнашивания деталей; правильно установить вид и объем ремонта и снизить трудоемкость текущего ремонта за счет сокращения разборочно-сборочных и ремонтных работ; полнее использовать ресурсы отдельных агрегатов и машины в целом, а следовательно, сократить общее количество ремонтов и расход запасных частей.

    Опыт внедрения диагностирования показывает, что межремонтный ресурс увеличивается в 1,5...2 раза, число отказов и неисправностей уменьшается в 2...2,5 раза, а затраты на ремонт и техническое обслуживание сокращаются на 25...30%.

    Кроме того система технических обслуживаний по фиксированному ресурсу (среднестатистическая система) не обеспечивает высокой надежности и минимальных затрат. Эта система постепенно отмирает, все шире внедряется новый и более экономичный метод обслуживания и ремонта по фактическому техническому состоянию (диагностическая система). Что позволяет полнее использовать межремонтный ресурс машин, устранить необоснованную разборку механизмов, сократить простои вследствие технических неисправностей, снизить трудоемкость технического обслуживания и ремонта. Эксплуатация по техническому состоянию может принести выгоду, эквивалентную стоимости 30% общего парка машин.

    В некоторых случаях целесообразно использование комбинированного (смешанного) диагностирования - представляющего совокупность регламентированного технического диагностирования и диагностирования по техническому состоянию.

    Для диагностической и комбинированной систем требуются новые методы ис­следования, иной математический аппарат. В основу должна быть положена теория надежности. Необходимо глубже изучать и учитывать изменения физических законо­мерностей отказов, износов и старения деталей в механических системах. Важная роль в совершенствовании управления надежностью подвижного состава принадлежит разработке и внедрению методов прогнозирования технического состояния агрегатов автомобилей.

    Цели и задачи технической диагностики. Связь диагностики и надежности

    Целью технической диагностики является повышение надежности и ресурса технических систем. Мероприятия по сохранению надежности машин направлены на снижение скорости изменения параметров состояния (главным образом скорости изнаши­вания) их составных частей и предотвращение отказов. Как известно, наиболее важным показателем надежности является отсутствие отказов во время функционирования (работы) технической системы.

    Техническая диагностика благодаря раннему обнаружению дефектов и неисправностей позволяет устранить отказы в процессе технического обслуживания, что повышает надежность и эффективность эксплуатации.

    В процессе эксплуатации оборудования в результате его износа нарушается предусмотренные конструкцией движения, что приводит к погрешностям обрабатываемых поверхностей. Возможность непосредственной оценки степени износа есть не всегда и для различных групп оборудования используются различные диагностические схемы. Рекомендуется следующая последовательность разработки таких схем.

    На первом этапе для каждой группы оборудования (станков) устанавливают измеряемые параметры обрабатываемых изделий, определяющие их качество. Например. для токарных станков такими параметрами являются диаметр обрабатываемой детали. форма ее продольного и поперечного сечений. шероховатость и волнистость поверхности.

    На втором этапе разработки диагностической схемы устанавливают основные, наиболее существенные причины отклонений измеряемых параметров изделий от заданных.

    На третьем этапе устанавливают сборочные единицы оборудования, техническое состояние которых вызывает отклонение измеряемого параметра.

    На четвертом этапе определяют процессы, сопутствующие работе станка (например шумы и вибрации), которые можно использовать для его диагностирования.

    На пятом этапе определяют возможность использования известных методов диагностирования, либо необходимость разработки новых. Выбор метода диагностирования производят с учетом следующих требований:

    Требуемая точность диагностирования.

    Простота и безопасность метода.

    Наличие или возможность приобретения необходимой аппаратуры или оборудования.

    Результаты диагностирования должны обеспечивать возможность прогнозирования технического состояния оборудования.


    Методы диагностирования.

    Методы диагностирования классифицируют в зависимости от характера и физической сущности параметров технического состояния объектов. Их подразделяют на 2 группы:

    1. Органолептические (субъективные)

    2. Инструментальные (объективные).

    Субъективные.

    Позволяют оценивать техническое состояние объектов с посощью

    органов чувств:

    Осмотром – выявляют места подтекания топлива, масла и технических жидкостей. определяют их качество по пятну на фильтровальной бумаге, находят трещины на металлоконструкциях и определяют их деформацию. определяют цвет отработанных газов, биение вращающихся частей, натяжение цепных передач и др.

    Ослушиванием (в том числе с помощью стетоскопа) – выявляют места и характер стуков, шумов, перебоев в работе двигателя, отказы в трансмиссии и ходовой системе и т.п.

    Осязанием – определяют места и степень ненормального нагрева, биения, вибраций деталей, возможность жидкостей и т.п.

    Обонянием – выявляют отказ муфты сцепления, течь топлива и др.

    Достоинство субъективных методов – низкая трудоемкость и отсутствие средств измерений. Однако этот метод дает только качественные оценки и зависит от опыта и квалификации диагноста.

    Объективные.

    Инструментальные метода контроля работоспособности основаны на использовании измерительных приборов, стендов и другого оборудования и позволяют количественно определять параметры технического состояния.

    По назначению методы диагностирования подразделяются на тестовые, функциональные и ресурсные.

    Тестовые – проверка исправности и работоспособности, а также поиск неисправностей. Осуществляемая когда объект не применяется по прямому назначению или тестовые воздействия не мешают нормальному функционированию объекта. При этом на объект диагностирования подается специальное тестовое воздействие.

    Функциональные – предназначены для измерения параметров, характеризующих функциональные свойства машин, узлов и агрегатов, при этом на ОД поступают только рабочие воздействия.

    Ресурсные – используют для определения остаточного ресурса диагностируемых узлов, агрегатов и машин.

    По характеру измерения параметров методы диагностирования машин подразделяются на прямые и косвенные.

    Прямые – основаны на непосредственном измерении параметров технического состояния (структурных): зазоров в сопряжениях, размеров деталей, прогиба цепных и ременных передач и др. Эти методы применяют при контроле механизмов и устройств. доступных и удобных для проверки и не требующих разборки (приводные механизмы, ходовая часть, рулевое управление, тормозная система и др.).

    Косвенные методы – позволяют определять структурные параметры по диагностическим (косвенным) параметрам с помощью датчиков или диагностических устройств установленных снаружи агрегатов. К косвенным параметрам относятся: давление и температура рабочего тела; расход топлива; масла; вибраций узлов и др.

    По физическому принципу выделяют следующие методы диагностирования, каждый из которых контролирует определенный физический процесс (величину):

    Энергетический (определение силы и мощности);

    Тепловой (температура);

    Пневмогидравлический (давление);

    Виброакустический (АЧХ);

    Спектрографический;

    Магнитоэлектрический;

    Оптический и др.

    Наиболее часто используют следующие методы:

    1. Статопараметрический – основан на измерении давления, подачи или расхода рабочей жидкости и позволяет оценивать объемный КПД.

    2. Метод амплитудно-фазовых характеристик – основан на анализе волновых процессов изменения давления в папорной и сливной магистрали. Метод используется для оценки работоспособности и локализации неисправности гидропривода.

    3. Временной метод также используется для оценки работоспособности гидропривода и основан на изменении параметров движения в заданных режимах (подъем ковша погрузчика или экскаватора от min до max значения).

    4. Силовой метод – основан на изменении усилия на рабочем органе, движителя или крюке, для чего используется погрузочные стенды.

    5. Метод переходных характеристик – предусматривает анализ неустановившихся режимов работы пневмо- и гидросистем.

    6. Виброакустический метод базируется на анализе параметров вибрации и акустических шумов, например ДВС. В процессе эксплуатации из-за нарушения заданных кинематических связей характерных шумов и вибраций изменяется.

    7. Тепловой метод основан на оценке распределения температуры по поверхностям сборочных единиц, а также разности температур рабочей жидкости на входе и выходе.

    8. Метод анализа ТСМ и рабочих жидкостей предусматривает определение их свойств и состава. Например, интенсивность изнашивания оценивается количеством частиц металла в жидкости.

    9. Радиационный метод – основан на ослаблении интенсивности излучения, проходящего через объект диагностирования и позволяет оценить износ деталей и дефектов в них.

    10. Электрический метод – предусматривает непосредственное измерение электрических параметров (например, сопротивления проводов системы зажигания ДВС сигналов с датчиков и т.д.).

    11. Нефелометрический метод – сравнивает интенсивность 2 световых потоков, один из которых проходит через эталонную жидкость, другой через рабочую, определяя степень загрязненности. Аналогичные фотоэлектрические датчики позволяют оценивать рабочую жидкость в потоке.

    12. Фотоэлектрический метод – используется также для измерения линейных и угловых люфтов, а также зазоров в сопряжениях.

    13. Для определения структуры, свойств контроля дефектов используют магнитные, вихревые, ультразвуковые методы.

    14. Химический анализ – используется для определения качества масла и топлива.

    15. Метод контроля проникающими веществами, например люминесцентный.

    При выборе того или иного метода измерения диагностического

    параметра следует исходить из его вида, диапазона измерения, условий работы или остановки объекта при измерении, доступности технологии измерения и необходимости аппаратуры. при этом диапазон измерений должен обеспечивать регистрации. минимальных и максимальных значений диагностических параметров.

    Средства диагностирования.

    Система диагностирования представляет собой совокупность средств технического диагностирования, объекта диагностирования и исполнителей.

    Средства технической диагностики позволяют оценивать техническое состояние проверяемого объекта. Они включают: программные средства и компьютерную технику для их реализации, эксплуатационную документацию (технологическая пооперационная карта диагностирования, диагностическая карта, структурно-следственная схема поиска неисправности, диагностические матрицы локализации неисправности, схемы и пооперационные карты восстановления работоспособности и др.), технические средства диагностирования (ТСД - приборы, стенды или устройства для определения состояния ОД).

    ТСД разделяют на:

    - внешние средства, подключаемые только для осуществления процесса диагноза;

    - встроенные средства , составляющие с ОД конструктивно единое целое и дающие возможность получать информацию о его состоянии непрерывно.

    По степени автоматизации ТСД бывают:

    Ручными, управляемыми человеком-оператором;

    Автоматизированными работающими с участием человека (включение, выключение, переключение режимов);

    Автоматические, работающие без участие человека.

    В зависимости от степени подвижности ТСД подразделяются на:

    Переносные

    Передвижные, монтируются. как правило, на самоходных транспортных средствах.

    Стационарные, устанавливаемые на участках д., испытательных и контрольных центрах.

    Средства диагностирования на современной технике существенно повышает ее работоспособность.


    Основу материальной базы диагностирования составляют диагностические комплекты оборудования, приборов и приспособлений, а также посты и участки диагностирования. Помимо внешних средств диагностирования, в последнее время широкое распространение получают встроенные средства диагностирования машин, которые позволяют диагностировать ее в процессе эксплуатации. Они подразделяются на следующие группы (рис. 1.7.):

    Предельные автоматы, прекращающие работу машины (агрегата);

    Индикаторы постоянного действия (стрелочные, световые, например указатель давления масла в системе смазки двигателя) или периодического действия (сигнализаторы или приборы визуального наблюдения – уровня топлива, масла, тормозной жидкости);

    Накопители информации с выводом на сигнализаторы или с периодическим съемом информации для её последующей обработки в стационарных условиях.

    Комбинация встроенных и внешних средств диагностирования позволяет значительно снизить вероятность пропуска отказов и повысить достоверность информации.

    Автоматизация процессов диагностирования существенно улучшает основные показатели и характеристики систем диагностирования. В частности, благодаря автоматизации удается значительно сократить время на выдачу диагноза, снизить требования к квалификации операторов-диагностов, в ряде случаев вообще отказаться от их услуг, снизить трудоемкость операций диагностирования, улучшить форму представления результатов диагноза и повысить достоверность его постановки.

    Быстрое распространение в 80-х годах XX века сложных электронных систем управления двигателем потребовало новых методов диагностики и диагностического оборудования. Большое количество различных типов электронных блоков управления (ЭБУ) потребовало новых диагностических средств для быстрого доступа к технической информации для каждой машины. Эти средства были разработаны и разделяются на 3 категории:

    1. стационарные (стендовые) диагностические системы. Они не подключаются к ЭБУ и независимы от бортовой диагностической системы машины. Они используются для диагностики систем впрыска – зажигания (мотор-тестеры), тормозных систем, подвески и пр.

    2. бортовые диагностические средства, которые кодируют обнаруженные неисправности и выводят их на приборный щиток с помощью световой индикации;

    3. бортовое диагностическое программное обеспечение, для доступа к которому требуются специальные дополнительные диагностические устройства: диагностические тестеры, скаперы и пр.

    В памяти компьютера ЭБУ (регистратора неисправностей) сохраняются как коды постоянных (текущих) неисправностей, так и тех, которые были обнаружены ЭБУ, но в данный момент не проявляются – это непостоянные (однократные) коды. Они и коды постоянных неисправностей называются «кодами ошибок» или «кодами неисправностей».


    Датчики.

    Датчик – это конструктивно законченное устройство, состоящее из чувствительного элемента и первичного преобразователя. В случае, если в датчике не происходит преобразование сигналов. он включает только чувствительный элемент. В зависимости от типа первичного преобразователя датчики подразделяются на: электрические и неэлектрические . Электрические подразделяют на параметрические (пассивные) и генераторные (активные).

    Параметрические датчики преобразуют входное воздействие в изменение внутреннего параметра – сопротивления, емкости, индуктивности, с использованием постороннего источника энергии.

    Генераторные датчики сами генерируют ЭДС при воздействии входной величины. Это термопары, индукционные, пьезоэлектрические и др. датчики.

    Различные типы первичных преобразователей могут использоваться в датчиках разных физических величин (таб. 3.1). Основными характеристиками датчиков являются: чувствительность, порог чувствительности, предел измерения, инерционность, динамический диапазон измерения и др.

    Принцип работы и область применения первичных преобразователей определяют целесообразность их применения при диагностировании:

    1. Резистивные, преобразующие линейное или угловое перемещение в электрический сигнал.

    2. Тензометрические – используют для измерения малых перемещений и деформаций.

    3. Электромагнитные включают:

    3.1 Индуктивные – используют изменение индуктивного сопротивления для измерения малых перемещений подвижного якоря.

    3.2 В трансформаторных датчиках выходное напряжение изменяется при перемещении или повороте подвижного якоря.

    3.3 Магнитоупругие датчики измеряют температуру или усилие за счет измерения магнитной проницаемости ферромагнитных сердечников (пермаллой).

    3.4 Магниторезисторные преобразователи используют эффект изменения сопротивления под действием магнитного поля.

    3.5 Индукционные преобразователи представляют собой импульсные генераторы.

    4. Емкостные, для измерения малых линейных перемещений с точностью до 0,1…0,01 мкм используют изменение зазора между обкладками конденсатора, что приводит к изменению его емкости.

    5. Пьезоэлектрические преобразователи позволяют измерять усилия, давления, вибраций и др. за счет пьезоэффекта кристаллов. (кварца, TiBa и др.).

    6. Фотоэлектрические преобразователи (фотоэлементы) трансформируют световой поток в электросигнал (лампы. фоторезисторы и фотопробразователи – диоды и генераторы).

    7. Преобразователи температуры:

    7.1 биметаллические

    7.2 дилатометрические – для измерения и регулирования температур в котлах от -60 до +450 о С.

    7.3 манометрические преобразуют тепловое изменение объема в изменении давления и перемещение сильфонов и трубок с жидкостью (ацетон, спирт) или газом (N, эфир и др.).

    7.4 металлические терморезисторы – очень точные (до 0,001 о С) с диапозоном от -200 до +650 о С (Pt).

    7.5 термопары (от -200 до 800 о С).

    8. Преобразователи Хома для измерения положения. перемещения, а также давления при смещении постоянного магнита в магнитном поле. где возникают Э.Д.С.



    В зависимости от типа системы диагностирования осуществляется подбор средств диагностирования и датчиков информации. При этом особое внимание уделяется стоимости встроенных систем диагностирования или трудоемкости оснащения датчиками разделенных систем (ОД – СД) диагностирования. В последнем случае широко используются накладные датчики с магнитным креплением. Для диагностирования С,Д и ПТ машин серийно выпускаются датчики, но большинство датчиков специально проектируют и производят с учетом конструкций диагностируемых машин. с использованием серийных первичных преобразователей.

    Миниатюризация и компьютеризация коснулись и конструкций датчиков. Для обработки микропроцессором сигнал с датчика должен поступать в цифровом виде. поэтому современные датчики выделяют цифровой сигнал или используют аналого-цифровые преобразователи (АЦП). В последнее время создаются интеллектуальные информационные системы типа «датчик ЭВМ», объединяющие датчик с микропроцессором в единое целое.

    В настоящее время широко применяются следующие датчики:

    1. Датчики положения – потенциометрические датчики угла и пути. Они могут быть однооборотные (угол поворота до 360 о) и многооборотные (до 3600 о) , скорость перемещение до 10 м/с, при длине до 3000 мм., до 20 м/с при ходе до 150мм. Они могут быть контактными и бесконтактными (трансформаторными) к ним относятся и концевые выключатели.

    2. Датчики перемещения – используются для измерения зазоров, люфтов и низкочастотных виброперемещений с помощью тензорезисторных, резисторных, индуктивных, индукционных, фотоэлектрических преобразователей. Для бесконтактного измерения перемещений применяют вихретоковые датчики (катушки).

    Для измерения углового положения валов, их угловых скоростей и ускорений используется датчики угловых перемещений – угловые индекаторы или энкодеры, например цифровые фотоимпульсные энкодеры, а также фотоимпульсные датчики. Абсолютные энкодеры формирует сигнал в покое и движении, не теряет его при потере питания. Он не подвержен помехам и не требует точной установки вала. Они бывают одно (до 360 о) и многооборотными.

    3. Датчики скорости (угловой и линейной) применяют с фотоэлектрическими и магнитно-электрическими (индукционными, вихретоковыми) преобразователями, а также тахогенераторами (постоянного и переменного тока).

    4. Датчики ускорений (угловых и линейных) тоже энкодеры измеряющие ускорения до 500д.

    5. Датчики давлений в гидро- и пневмоприводах

    Манометры и электрические датчики. работающие как в аналоговых, так и в цифровых системах (HART – потока).

    6. Датчики расхода в диагностировании:

    Переменного перепада давления (с диафрагмами)

    Обтекания (с поворотной лопастью)

    Тахометрические (турбинные)

    Камерные (поршневые, шестеренные …)

    Тепловые

    Ультразвуковые

    7. Датчики температуры – это термопары и термометры сопротивления, а также микропроцессорные датчики с первичным преобразователем – термопарой. При диагностике строительных и дорожных машин применяются кремниевые датчики (чувствительный элемент – кристалл кремния с нанесенными на него пленочными резисторами) для твердых, жидких и газообразных веществ.

    Современная техническая диагностика пользуется для определения технического состояния машин приборами, дающими возможность более объективно определять состояние машин, а также воспринимать диагностические сигналы, излучаемые механизмом, недоступные восприятию непосредственно органами чувств человека.

    Для разработки методов и средств технической диагностики какой-либо машины, прежде всего, следует выявить, какие параметры характеризуют работу проверяемой машины и определяют ее надежность. Затем надо установить диагностические критерии количественной величины параметров и для их определения разработать соответствующие методы и средства.

    В настоящее время основными параметрами, характеризующими качество работы технологического оборудования, являются: производительность, точность, жесткость, виброустойчивость и шумообразование; надежность технологического оборудования характеризуется вероятностью безотказности, долговечностью, ремонтопригодностью его частей и механизмов.

    В большинстве случаев состояние перечисленных параметров взаимосвязано, что дает возможность значения одного параметра определять через значение другого. Например, точность работы некоторых механизмов металлорежущего станка можно определить, проверив их на жесткость. Диагностирование технологического оборудования по точности, жесткости, виброустойчивости и шумообразованию следует производить методами и средствами, указанными в соответствующих стандартах.

    В зависимости от условий проведения диагностирования применяются следующие виды технической диагностики.

    Техническая диагностика, проводимая в динамике объекта : по параметрам рабочих процессов (мощность, расход топлива, производительность, давление и др.); по диагностическим параметрам, косвенно характеризующим техническое состояние (температура, шум, вибрации и т.д.).

    Техническая диагностика, выполняемая в статике объекта : по структурным параметрам (износ деталей, зазор в сопряжениях и т.п.).

    По объему, методам и глубине операций она может быть комплексной (называемой также общей) и поэлементной.

    Комплексная диагностика выявляет нормальное функционирование, эффективность, работоспособность машины (агрегата) в целом. Цель ее – определить соответствие нормам выходных эксплуатационных показателей проверяемых агрегатов по их основным функциям. Примером такой диагностики может быть определение мощности и топливной экономичности двигателя, производительности и долговечности насоса, потерь в трансмиссии, процента буксования сцепления и т. д.

    Поэлементная диагностика определяет причину нарушения работы агрегатов (механизмов) обычно по сопутствующим косвенным признакам; например, причину потерь мощности двигателя – по компрессии или прорыву газов в картер, причину повышенного расхода топлива – по уровню в поплавковой камере карбюратора или производительности жиклеров, причину потерь в трансмиссии – по вибрациям и нагревам и т.д. Однако в этом случае конкретизация причин неисправностей доводится лишь до такого уровня, при котором выявляется потребность снятия или разборки проверяемого механизма.


    Вообще диагностику, как правило, проводят на нескольких уровнях:

    1) на уровне машины в целом;

    2) на уровне ее агрегатов;

    3) на уровне систем, механизмов и деталей и др.

    При этом на каждом из перечисленных уровней определяют техническое состояние, главным образом, двухмерно. Это означает, что диагностика должна дать однозначный ответ: нуждается или не нуждается в настоящее время проверяемый агрегат в ремонте или техническом обслуживании с учетом обеспечения безотказной работы до очередного планового технического воздействия. Если техническое состояние проверяемого агрегата не соответствует нормам, и он состоит из нескольких самостоятельных механизмов, то необходима поэлементная диагностика каждого из этих механизмов и т. д.

    При поэлементной диагностике данного механизма в первую очередь проверяют механическое состояние так называемых «критических» деталей, т.е. таких деталей, которые в первую очередь определяют работоспособность механизма (клапаны бурового насоса, опора ротора и др.).

    Глубина диагностики механизмов ограничивается получением ответа на вопрос: необходима ли разборка механизмов. Если она необходима, то дальнейшее более детальное диагностирование не имеет практического смысла, поскольку дефекты могут быть выявлены более просто и точно после разборки механизма.

    Методы и средства диагностики отдельных агрегатов, систем и механизмов определяются их конструкцией и выполняемыми функциями.

    В зависимости от вида диагностических параметров применяют следующие методы технической диагностики: измерение потерь на трение в механизмах; определение теплового состояния механизмов; проверку состояния сопряжении, установочных размеров, герметичности и утечек, контроль шума и вибраций в работе механизма; анализ картерного масла (двигателя, ротора, вертлюга и др.).

    Диагностику оборудования необходимо начинать с получения сведений о наработке оборудования и ремонтах, которым оно подвергалось, о расходе топлива и масла, динамике, склонности к перегреву двигателя и других агрегатов, о дымлении, скрипах, шумах и т.д.

    Эти сведения позволяют более целеустремленно проводить дальнейшую диагностику уже с применением технических средств, при помощи которых проверяют показатели эффективности и работоспособности оборудования в целом, его агрегатов и механизмов.

    Средства диагностики технического оборудования служат для фиксирования

    и измерения величины диагностических признаков (параметров). Для этого применяют приборы, приспособления и стенды сообразно характеру диагностических признаков и методам диагностики.

    Значительное место среди них занимают электроизмерительные при-

    боры (вольтметры, амперметры, осциллографы и др.). Они широко применя-

    няются как для непосредственного измерения электрических величин (например, при диагностике систем зажигания и электрооборудования автомобиля), так и для измерения неэлектрических процессов (колебаний, нагрева, давления), преобразованных при помощи соответствующих датчиков в электрические величины.

    Для этой цели электрические измерительные приборы снабжают датчиками.

    При диагностике механизмов наиболее часто используют: датчики сопротивления, концевые, индукционные, оптические и фотоэлектрические датчики, при помощи которых можно измерять зазоры, люфты, относительные перемещения, скорость и частоту вращения проверяемых деталей; термосопротивления, термопары и биметаллические пластины для измерения теплового состояния деталей; пьезоэлектрические и тензометрические датчики для замера колебательных процессов давления, биений, деформаций и др.

    Одно из положительных качеств электроизмерительных приборов - удобство получения информации, а также в перспективе возможность ее анализа при помощи счетно-решающих устройств.

    В зависимости от полноты и степени механизации технологических процессов диагностику можно проводить выборочно, только для контроля технического состояния отдельных сборочных единиц, или комплексно для проверки сложных агрегатов, таких как двигатель, и, наконец, комплексно для диагностики машины в целом.

    В первом случае используются для отдельных измерений такие диагностические приборы как стетоскопы, манометры, тахометры, вольтметры, амперметры, секундомеры, термометры и другие переносные приборы.

    Во втором случае приборы комбинируют в виде передвижных стендов, в третьем случае – ими комплектуют датчики и пульты управления стационарных стендов.

    Передвижным комплексным средством диагностики является ходовая диагностическая станция. Она может обеспечивать диагностику технического состояния автомобилей в местах их временного размещения. Компоновка ходовой диагностической станции возможна на базе прицепа достаточно большой грузоподъемности.

    Основными требованиями к средствам диагностики являются: обеспечение достаточной точности замеров, удобство и простота использования при минимальной затрате времени.

    Помимо различных приборов, индикаторов узкого назначения, в систему диагностических средств включают комплексы электронной аппаратуры.

    Эти комплексы могут состоять из датчиков – органов восприятия диагностических признаков, блоков измерительных приборов, блоков обработки информации в соответствии с заданными алгоритмами и, наконец, блоков хранения и выдачи информации в виде запоминающих устройств для преобразования информации в удобный для использования вид.

    Приложение 8

    Техническая диагностика оборудования

    Общие положения

    Цели, задачи и основные принципы технического диагностирования (ТД) оборудования рассмотрены в разделе 3.3. В данном Приложении кратко рассмотрена методика и приведен один из общих способов организации ТД на предприятии.


    Требования к оборудованию, переводимому на техническое диагностирование

    В соответствии с ГОСТ 26656-85 и ГОСТ 2.103-68 при переводе оборудования на стратегию ремонта по техническому состоянию в первую очередь решается вопрос о его приспособленности для установки на нем средств ТД.

    О приспособленности находящегося в эксплуатации оборудования к ТД судят по соблюдению показателей надежности и наличию мест для установки диагностической аппаратуры (датчиков, приборов, монтажных схем).

    Далее определяют перечень оборудования, подлежащего ТД, по степени его влияния на мощностные (производственные) показатели производства по выпуску продукции, а также на основе результатов выявления «узких мест» по надежности в технологических процессах. К этому оборудованию, как правило, предъявляются повышенные требования надежности.

    В соответствии с ГОСТ 27518-87 конструкция оборудования должна быть приспособлена для ТД. Согласно ГОСТ 26656-85 под приспособленностью к ТД понимается свойство оборудования, характеризующее его готовность к проведению контроля заданными методами и средствами ТД.

    Для обеспечения приспособленности оборудования к ТД его конструкция должна предусматривать:

    возможность доступа к контрольным точкам путем вскрытия технологических крышек и люков;

    наличие установочных баз (площадок) для установки виброметров;

    возможность подключения и размещения в закрытых жидкостных системах средств ТД (манометров, расходометров, гидротесторов в жидкостных системах) и подключение их к контрольным точкам;

    возможность многократного присоединения и отсоединения средств ТД без повреждения устройств сопряжения и самого оборудования в результате нарушения герметичности, загрязнения, попадания посторонних предметов во внутренние полости и т. д.

    Перечень работ по обеспечению приспособленности оборудования к ТД приводится в техническом задании на модернизацию переводимого на ТД оборудования.

    После определения перечня оборудования, переводимого на ремонт по техническому состоянию, подготавливается исполнительная техническая документация по разработке и внедрению средств ТД и необходимой модернизации оборудования. Перечень и очередность разработки исполнительной документации приведены в табл. 1.

    Таблица 1

    Перечень исполнительной документации на диагностирование

    Выбор диагностических параметров и методов технического диагностирования

    Определяются параметры, подлежащие постоянному или периодическому контролю для проверки алгоритма функционирования и обеспечения оптимальных режимов работы (технического состояния) оборудования.

    По всем агрегатам и узлам оборудования составляется перечень возможных отказов. Предварительно проводится сбор данных об отказах оборудования, оснащаемого средствами ТД, или его аналогов. Анализируется механизм возникновения и развития каждого отказа и намечаются диагностические параметры, контроль которых, плановое техническое обслуживание и текущий ремонт могут предотвратить отказ. Анализ отказов рекомендуется проводить по форме, представленной в табл. 2.

    Таблица 2

    Форма для анализа отказов и выбора диагностических параметров, методов и средств технического диагностирования



    По всем отказам намечаются диагностические параметры, контроль которых поможет оперативно отыскать причину отказа, и метод ТД (табл. 3).

    Таблица 3

    Методы технического диагностирования




    Определяется номенклатура деталей, износ которых приводит к отказу.

    Определяются параметры, контроль которых необходим для прогнозирования ресурса или срока службы деталей и соединений.

    На практике получили распространение диагностические признаки (параметры), которые можно разделить на три группы:

    параметры рабочих процессов (динамика изменения давления, усилия, энергии), непосредственно характеризующие техническое состояние оборудования;

    параметры сопутствующих процессов или явлений (тепловое поле, шумы, вибрации и др.), косвенно характеризующие техническое состояние;

    параметры структурные (зазоры в сопряжениях, износ деталей и др.), непосредственно характеризующие состояние конструктивных элементов оборудования.

    Составляется сводный перечень диагностируемых отказов, возможные причины отказов, предшествующие отказу неисправности и т. д.

    Исследуется возможность сокращения числа контролируемых параметров за счет применения обобщенных (комплексных) параметров:

    устанавливают диагностические параметры, характеризующие общее техническое состояние деталей оборудования, технологического комплекса, линии, объекта в целом, их отдельных частей (агрегатов, узлов и деталей);

    устанавливаются частные диагностические параметры, характеризующие техническое состояние отдельного сопряжения в узлах и агрегатах.

    Для удобства и наглядности методов и средств ТД разрабатываются функциональные схемы контроля параметров технологических процессов и технического состояния оборудования.

    экономическую эффективность процесса ТД;

    достоверность ТД;

    наличие выпускаемых датчиков и приборов; универсальность методов и средств ТД.

    Проводятся исследования выбранных диагностических признаков для определения диапазонов их изменения, предельно допустимых значений, моделирования отказов и неисправностей.

    Выбираются средства ТД. При необходимости составляется заявка на создание (приобретение) средств ТД, датчики, приборы, монтажные схемы и т. д.

    Разрабатывается технология ТД, технические требования к диагностическому оборудованию.

    По результатам анализа отказов оборудования разрабатываются мероприятия по повышению надежности оборудования, в том числе разработка средств ТД.


    Средства технической диагностики

    По исполнению средства ТД подразделяют на: внешние – не являющиеся составной частью объекта диагностирования;

    встроенные – с системой измерительных преобразователей (датчиков) входных сигналов, выполненных в общей конструкции с оборудованием диагностирования как его составная часть.

    Внешние средства ТД подразделяют на стационарные, передвижные и переносные.

    Если принято решение о диагностировании оборудования внешними средствами, то в нем должны быть предусмотрены контрольные точки, а в руководстве по эксплуатации средств ТД необходимо указать их расположение и описать технологию контроля.

    В оборудование встраиваются средства ТД, информация от которых должна поступать непрерывно или периодически. Эти средства контролируют параметры, выход значений которых за нормативные (предельные) значения влечет за собой аварийную ситуацию и зачастую не может быть предсказан заранее в периоды технического обслуживания.

    По степени автоматизации процесса управления средства ТД подразделяют на автоматические, с ручным управлением (неавтоматические) и с автоматизированно-ручным управлением.

    Как правило, автоматические средства ТД содержат источники воздействий (в системах тестового диагноза), измерительные преобразователи, аппаратуру расшифровки и хранения информации, блок расшифровки результатов и выдачи управляющих воздействий.

    Средства ТД с автоматизированно-ручным управлением характеризуется тем, что часть операций ТД выполняется автоматически, осуществляется световая или звуковая сигнализация или принудительное отключение привода при достижении предельных значений параметров, а часть параметров контролируется визуально по показаниям приборов.

    Возможности автоматизации диагностирования значительно расширяются при использовании современной компьютерной техники.

    В технические задания на разработку средств ТД, встраиваемых в гибкие производственные системы, рекомендуется включать требования обеспечения автоматического диагностирования оборудования с глубиной поиска дефекта (отказа) до основного узла.

    При создании средств ТД для технологического оборудования могут применяться различные преобразователи (датчики) неэлектрических величин в электрические сигналы, аналого-цифровые преобразователи аналоговых сигналов в эквивалентные значения цифрового кода, сенсорные подсистемы технического зрения.

    К конструкциям и типам преобразователей (датчиков), применяемых для средств ТД, рекомендуется предъявлять следующие требования:

    малогабаритность и простота конструкции, приспособленность для размещения в местах с ограниченным объемом размещения аппаратуры;

    возможность многократной установки и снятия датчиков при минимальной трудоемкости и без монтажа оборудования;

    соответствие метрологических характеристик датчиков информационным характеристикам диагностических параметров;

    высокая надежность и помехоустойчивость, включая возможность эксплуатации в условиях электромагнитных помех, колебаний напряжений и частоты питания;

    устойчивость к механическим воздействиям (удары, вибрации) и к изменению параметров окружающей среды (температура, влажность);

    простота регулирования и обслуживания.

    Заключительным этапом создания и внедрения средств ТД является разработка документации.

    эксплуатационная конструкторская документация;

    технологическая документация;

    документация на организацию диагностирования.

    Эксплуатационная конструкторская документация – это руководство по эксплуатации на объект диагностирования по ГОСТ 26583-85, которое должно включать руководство по эксплуатации средства ТД, в том числе конструкцию и описание устройств сопряжения с объектом.

    В руководстве по эксплуатации задают режимы работы оборудования, при которых производится диагностирование.

    Технологическая документация на ТД включает:

    технологию выполнения работ;

    очередность выполнения работ;

    технические требования на выполнение операций ТД. Основным рабочим документом является технология ТД данной модели (типа) оборудования, которая должна содержать: перечень средств ТД;

    перечень и описание контрольно-диагностических операций;

    номинальные допустимые и предельные значения диагностического признака;

    характеристики режима работы при проведении ТД.

    Кроме эксплуатационной, технологической и организационной документации на каждый переводимый объект разрабатываются программы прогнозирования остаточного и прогнозируемого ресурса.


    Прогнозирование остаточного ресурса с помощью математических моделей

    Аппаратный поиск неисправностей, рассмотренный выше, необходим не только для устранения отказов, но и для прогнозирования остаточного и прогнозируемого ресурсов. Прогнозирование – это предсказание технического состояния, в котором объект окажется в некоторый будущий период времени. Это одна из важнейших задач, которую приходится решать при переходе на ремонт по техническому состоянию.

    Сложность прогнозирования заключается в том, что приходится привлекать математический аппарат, который не всегда дает достаточно точный (однозначный) ответ. Тем не менее, без него обойтись в этом случае нельзя.

    Решение задач прогнозирования весьма важно, в частности, для организации планово-предупредительного ремонта объектов по техническому состоянию (вместо обслуживания по срокам или по ресурсу). Непосредственное перенесение методов решения задач диагностирования на задачи прогнозирования невозможно из-за различия моделей, с которыми приходится работать: при диагностировании моделью обычно является описание объекта, в то время как при прогнозировании необходима модель процесса эволюции технических характеристик объекта во времени. В результате диагностирования каждый раз определяется не более чем одна «точка» указанного процесса эволюции для текущего момента (интервала) времени. Тем не менее, хорошо организованное диагностическое обеспечение объекта с хранением всех предшествующих результатов диагностирования может дать полезную и объективную информацию, представляющую собой предысторию (динамику) развития процесса изменения технических характеристик объекта в прошлом, что может быть использовано для систематической коррекции прогноза и повышения его достоверности.

    Математические методы и модели для прогнозирования остаточного ресурса оборудования описаны в специальной литературе.


    Прогнозирование остаточного ресурса методом экспертных оценок

    При расчете остаточного ресурса чаще всего возникают трудности, связанные с отсутствием объективной информации, необходимой для принятия решений по методу, рассмотренному в предыдущем разделе. В большинстве случаев такие решения принимаются на основе учета мнений квалифицированных специалистов (экспертов) путем проведения экспертного опроса. При этом экспертные заключения дает рабочая группа, общее мнение которой формируется в результате дискуссии.

    Существует несколько способов экспертной оценки, а именно: непосредственной оценки, ранжирования (ранговой корреляции), попарного сопоставления, баллов (балльных оценок) и последовательных сопоставлений. Все эти способы отличаются один от другого как подходами к постановке вопросов, на которые отвечают эксперты, так и проведением экспериментов и обработки результатов опроса. Вместе с тем их объединяет общее – знания и опыт специалистов в данной области.

    Наиболее простым и объективным способом экспертной оценки являет способ непосредственной оценки, который широко применяется для определения остаточного ресурса на основе диагностирования технического состояния оборудования. Достоинством этого способа является высокая точность результатов расчета, а также возможность одновременного прогнозирования ресурса сразу по нескольким типам (образцам) оборудования.

    Для экспертной оценки ресурса оборудования на предприятии создается постоянно действующая рабочая группа, которая разрабатывает необходимую документацию, организует процедуру опроса экспертов, обрабатывает и анализирует полученную информацию.

    Руководителем рабочей группы должно быть ответственное лицо, осуществляющее, по мере необходимости, определение остаточного ресурса оборудования и дающее заключение о продолжительности работы без остановки на капитальный ремонт на определенное время (до очередного текущего ремонта). Он согласовывает с главным механиком (энергетиком) предприятия состав рабочей группы, составляет программу, принимает участие в опросе экспертов, анализирует предварительные результаты. При наличии на предприятии лаборатории ТД (как основного звена при переводе на стратегию ремонта по техническому состоянию) руководителем рабочей группы назначается заведующий этой лаборатории.

    В состав рабочей группы помимо непосредственных исполнителей целесообразно включать технических работников ОГМ и ОГЭ, старших механиков, механиков (мастеров) цехов, стаж которых по эксплуатации и ремонту данного оборудования составляет не менее пяти лет. В состав рабочей группы не следует включать начальников цехов, отделов, служб и т. д., авторитетные суждения которых могут повлиять на объективность экспертных оценок, а также на окончательное решение рабочей группы.

    В обязанности рабочей группы входит:

    подбор специалистов-экспертов;

    выбор наиболее приемлемого метода экспертных оценок и в соответствии с этим разработка процедуры опроса и составления опросных листов;

    проведение опроса;

    обработка материалов опроса;

    анализ полученной информации;

    синтез объективной и субъективной информации с целью получения оценок, необходимых для принятия решений.

    Руководитель рабочей группы перед организацией экспертного опроса должен представить экспертам максимально возможное количество объективных данных по диагностированию всех агрегатов, узлов, соединений и деталей по каждой единице оборудования, имеющихся в распоряжении рабочей группы, паспорта, ремонтные журналы и другую техническую документацию за весь срок службы оборудования. Путем проведения инструктажа необходимо информировать экспертов об источниках возникновения данного вопроса, путях решения сходных вопросов в прошлом на других предприятиях и оборудовании, т. е. повысить квалификацию (информативность) экспертов в данном вопросе.

    При отработке экспертных опросных листов следует особое внимание обратить на правильность задаваемых вопросов. Вопросы должны быть краткими (да, нет), не должны допускать двойного толкования.

    При формировании экспертной группы следует учитывать, что основной параметр экспертной группы – согласованность мнений экспертов – зависит от ряда факторов: информативности экспертов, взаимоотношений между ними, организационных аспектов опросных процедур, их сложности и т. д. Число экспертов, входящих в группу, зависит от их информативности и должно составлять от 7 до 12 экспертов, в отдельных случаях 15–20 человек.

    Для организационного оформления рабочей экспертной группы издается приказ по предприятию, в котором указываются задачи группы, руководитель и члены группы, сроки заполнения экспертных листов, срок окончания работы.

    Для проведения экспертного опроса подготавливаются специальные опросные листы.

    При организации экспертного опроса рабочая группа должна учитывать, что эксперту, как любому человеку, трудно без значительной ошибки выносить решения в случаях, когда имеется более семи альтернатив, например, назначать вес (значительность) более чем семи свойствам (показателям). Поэтому нельзя представлять экспертам список из нескольких десятков свойств (показателей) и требовать от них назначить веса этим свойствам (показателям).

    В тех случаях, когда требуется оценить большое количество свойств (факторов, показателей, параметров), их необходимо предварительно разделить на однородные группы (по функциональному назначению, принадлежности и др.) так, чтобы число показателей, входящих в однородную группу, не превышало 5–7.

    После ознакомления экспертов с состоянием исследуемого вопроса руководитель рабочей группы раздает им опросные листы и пояснительные записки. При этом наиболее авторитетный сотрудник рабочей группы разъясняет экспертам те положения опросного листа, которые недостаточно хорошо ими поняты.

    Получив заполненный опросный лист, руководитель рабочей группы при необходимости задает эксперту вопросы для уточнения полученных результатов. Это позволяет выяснить, правильно ли поняты экспертом вопросы опросного листа и действительно ли ответы соответствуют его истинному мнению.

    В процессе опроса сотрудники рабочей группы не должны высказывать эксперту свои суждения о его ответах, чтобы не навязывать ему своего мнения.

    После обработки результатов опроса проводится ознакомление каждого эксперта со значениями оценок, назначенными всеми другими экспертами, входящими в экспертную группу.

    Каждый эксперт, ознакомившись с анонимными мнениями других экспертов, вновь заполняет опросный лист.

    Допускается проведение и открытого обсуждения результатов опроса. Каждый эксперт при этом имеет возможность кратко аргументировать свои суждения и критиковать другие мнения. Для исключения возможного влияния служебного положения на мнение экспертов желательно, чтобы эксперты высказывались в последовательности от младшего к старшему (по служебному положению).

    В подавляющем большинстве случаев двух туров опроса бывает вполне достаточно для принятия обоснованного решения. В случаях, когда требуется повысить точность оценок путем увеличения объема статистической выборки (количеством ответов), а также при низкой согласованности мнений экспертов, экспертный опрос может быть проведен в три тура.

    Результатом опроса является определение искомого параметра прогнозирования на основе анализа ответов экспертов.

    Полученный по экспертным оценкам показатель следует рассматривать как случайную величину, отражением которой является индивидуальное мнение эксперта.

    Когда значение какого-либо показателя неизвестно, относительно него у специалиста-эксперта всегда имеется интуитивная информация. Естественно, что эта информация в известной мере является неопределенной, а степень неопределенности зависит от уровня знаний и технической эрудиции специалиста-эксперта. Задача рабочей группы заключается в том, чтобы извлечь эту неясную информацию и придать ей математическую форму.



    Поделиться