Деминерализация воды - важный этап подготовки воды для промышленных целей. Дистиллированная, деионизированная, деминерализированная, осмотическая, бидистиллированная и высокоомная вода. Малое поступление других макро- и микроэлементов

В последнее десятилетие значительно развилась техника деминерализации воды с помощью ионообменных смол (иониты). Ионообменные смолы делятся на две группы: 1) катиониты, представляющие собой смолы с кислой, карбоксильной или сульфоновой группой, обладающие способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов; 2) аниониты - чаще всего продукты полимеризации аминов с формальдегидом, обменивающие свои гидроксильные группы на анионы.

Деминерализация воды проводится в специальных аппаратах-колонках, причем в принципе можно или пропускать воду вначале через колонку с катионитом, а затем с анионитом или в обратном порядке (так называемая конвенкционная система), или пропускать воду через одну колонку, содержащую одновременно и катионит, и анионит (смешанная колонка).

Приводим описание одной из отечественных промышленных обессоливающих установок производительностью 10 т/ч, работающей по схеме: механические фильтры - Н-катионирование - декарбонизация - ОН-анионирование (рис.79).

Вода из городского водопровода при помощи насосов / поступает в механический блок, состоящий из двух фильтров, загружаемых суль-фоуглем. Вода проходит фильтр сверху вниз и поступает на Н-катио-нирование 2. Эксплуатация механического фильтра предусматривает взрыхление (один раз в 3 дня), которое необходимо для предотвращения слеживания сульфоугля и вымывания грязи, образующейся за счет истирания сульфоугля. Взрыхление производят током воды снизу. Схемой предусмотрена также подача водопроводной воды на катиони-рование, минуя механические фильтры. Н-катионитовый блок состоит из трех фильтров и декарбонизатора 3, установленного после них. Ка-тионитовые фильтры загружаются смолой КУ-1, получаемой конденсацией фенолсульфокислоты и формальдегида, которая способна при определенных условиях поглощать из водных растворов различные катионы. Катионит КУ-1, как и остальные катиониты, характеризуется неодинаковой способностью к поглощению различных катионов.

Для большинства катионитов распределение активности поглощения различных катионов и соответствующая им емкость поглощения могут быть представлены следующим рядом:

Процесс катионного обмена протекает по схеме:

где К - органический анион катионита.

В дальнейшем в связи с различной способностью к обмену отдельных катионов ион натрия, обладающий наименьшей величиной подвижности, первым начнет вытесняться в фильтрат более подвижными катионами кальция и магния. Уменьшение в катионите количества водородных ионов, способных к обмену, повлечет за собой уменьшение кислотности на эквивалентную величину и увеличение в фильтрате ионов натрия.

Н-катионитовый фильтр представляет собой цилиндрический аппарат, снабженный верхним и нижним днищами, присоединенными к корпусу при помощи болтов. Поверхность фильтров гуммирована. На дно фильтра загружается кварцевый песок высотой слоя 300 мм, затем катионит высотой слоя 3 м. Наряду с кварцевым песком фильтру придаются верхние и нижние дренажные устройства, которые предотвращают вынос катионитовой смолы при эксплуатации фильтра.

Дренажные устройства состоят из гуммированных дисков, в которых на резьбе укреплены щелевые колпачки. Помимо сказанного, дренажные устройства предназначены для равномерного распределения по всей площади поперечного сечения фильтра проходящей через него воды как при катионировании, так и при взрыхлении и отмывке. Эксплуатация фильтра заключается в периодическом осуществлении четырех операций: 1) Н-катионирования; 2) взрыхления; 3) регенерации; 4) отмывки. Взрыхление катионита производят для устранения уплотнения, удаления грязи, нанесенной водой и раствором кислоты, и мелочи, образующейся за счет истирания катионита. Взрыхление производится исходной водой.

Регенерация Н-катионитовых фильтров производится 5% раствором хлористоводородной кислоты, приготовляемой в специальной емкости-

реакторе 10 с мешалкой 12. На приготовление раствора используется исходная вода; концентрированная хлористоводородная кислота подается из мерника 9, куда с помощью сжатого воздуха попадает из бака-хранилища 8. Приготовленный для регенерации раствор кислоты сохраняется в сборнике 11. Кислота после регенерации сбрасывается через слой мраморной крошки в канализацию.

После пропуска через фильтр необходимого количества кислоты сразу же производят отмывку фильтра исходной водой. Н-катиониро-ванная вода после разложения карбонатной жесткости содержит большое количество свободной углекислоты, которая удаляется в декарбо-низаторе 3 за счет десорбции, вследствие создания над поверхностью воды с помощью вентилятора 4 низкого парциального давления С0 2 . Десорбция возрастает с увеличением температуры среды, так как при этом снижается растворимость газа в воде. Декарбонизованная вода собирается в баке 5, откуда насосом 6 подается в анионитовый блок

Анионитовые фильтры загружены смолой ЭДЭ-10п, полученной конденсацией полиэтиленполиамидов и эпихлоргидрина, способной поглощать при определенных условиях различные анионы из водных растворов. ЭДЭ-10п, как и остальные аниониты, характеризуется неодинаковой способностью к поглощению различных анионов. Аниониты делятся на две группы: слабоосновные и сильноосновные. Слабоосновные аниониты способны поглощать анионы сильных кислот (SO 4 -2 CI - , NO 3 -), а анионы слабых кислот (HCO 3 - , HSiO 3 - др.) не удерживают их. Сильноосновные аниониты извлекают из водных растворов анионы как сильных, так и слабых кислот. Процесс анионного обмена протекает по схеме:

где А - органический катион анионита.

Анионитовый блок состоит из трех фильтров диаметром 800 мм и высотой 3,5 м. Устроены анионитовые фильтры аналогично катионито-вым. Эксплуатация анионитового фильтра заключается в периодическом осуществлении тех же четырех операций: 1) анионирования; 2) взрыхления; 3) регенерации; 4) отмывки.

Взрыхление анионитовых фильтров производится декарбонизирован-ной водой 5. Регенерация ОН-анионитовых фильтров осуществляется 3-4% раствором щелочи. Для приготовления регенерационного раствора щелочи необходимое количество концентрированного раствора, получаемого из твердого NaOH на обессоленной воде в реакторе с мешалкой 13, подается через мерник 14 в баки 15, куда для разбавления подведена обессоленная вода. Регенерационный раствор из баков 15 подается затем сжатым воздухом на фильтр 16 и далее на ОН-аниони-товый фильтр. Отмывка предназначена для удаления из фильтра избытка регенерационного раствора и продуктов регенерации и проводится де-карбонизированной водой. Отмывочные воды сбрасываются. С помощью ионитов можно получать деминерализованную воду, по своим качествам соответствующую фармакопейным нормам. В ряде случаев полезно сочетать деминерализацию воды с ее дистилляцией (для инъекционных растворов).

Для получения чистой деминерализованной воды применяют так называемые ионитовые фильтры (рис. 16). Действие их основано на способности некоторых веществ избирательно связывать катионы или анионы солей. Водопроводную воду вначале пропускают через катионит, связывающий только катионы. В результате получается вода, имеющая кислую реакцию. Затем эту воду пропускают через анионит, связывающий только анионы. Вода, пропущенная через оба ионита, называется деминерализованной (т. е. не содержит минеральных солей).


Рис 15. Колба для хранения дистиллированной воды с защитой от поглощения углерода.

По качеству деминерализованная вода не уступает дистиллированной и часто соответствует бидистилляту

Иониты постепенно насыщаются и перестают действовать, однако их легко регенерировать, после чего они могут быть использованы вновь. Практически регенерацию можно проводить много раз и одним и тем же ионитом очистить большое количество воды. Ионитовые установки широко применяют не только для очистки и деминерализации воды в промышленности, но и в аналитических лабораториях вместо приборов для дистилляции воды.



Рис. 16. Лабораторная установка для получения деминерализованной воды.

Рис. 17. Схема лабораторной установки для получения деминерализованной воды:1 - пробка; 2 - стеклянная вата; 3 - катионит; 4 - трехходовой край; 5 -пробка; 6-анионит; 7 -сливная труба.

Для получения деминерализованной воды можно смонтировать установку, которая позволит получать по 20-25 л/ч воды. Установка (рис. 17) состоит из двух трубок (колонок) высотой по 70 см и диаметром около 5 см. Колонки могут быть стеклянными, кварцевыми, а еще лучше - из прозрачных пластиков, например из плексигласа. В колонки помещают по 550 г ионообменных смол: в одну помещают катионит (в Н+-форме),а в другую-анионит (в OrT-форме). В пробирке / колонки с катионитом 3 имеется отводная трубка, которую резиновой трубкой соединяют с водопроводным краном.

Воду, прошедшую через катионит, направляют во вторую колонку с анионитом. Скорость протекания воды через обе колонки должна быть не больше 450 см3/мин. В первых порциях воды, пропущенной через катионит, необходимо установить кислотность. Пробу воды отбирают через трехходовой кран 4, соединяющий колонки. Предварительное установление кислотности воды необходимо для последующего контроля качества деминерализованной воды.

Поскольку иониты постепенно насыщаются, нужно контролировать работу установки. После того как через нее пропустят около 100 л воды или она проработает непрерывно в течение 3,5 ч, следует взять пробу воды, прошедшей через колонку с катионитом..Затем 25 см3 этой воды титруют 0,1 н. раствором NaOH по метиловому оранжевому. Если кислотность воды резко уменьшилась по сравнению с результатом первой пробы, пропускание воды следует прекратить и провести регенерацию ионитов. Для -рееенерации катионита его высыпают из колонки в большую банку, заливают 5%-ным раствором HCl и оставляют в этом растворена ночь. После этого кислоту сличают и катионит промывают дистиллированной или деминерализованной водой до тех пор, пока проба на Сl- ионы в промывных водах не станет отрицательной. Пробу делают так: на часовое стекло помещают 2-3 капли промывной воды и добавляют к ней каплю 0,01 н. раствора AgN03. При отрицательной реакции муть не образуется.

Промытый катионит снова вводят в колонку. Анионит для регенерации высыпают в большую банку, заливают 2%-ным (0,5 н.) раствором NaOH и оставляют на ночь. Щелочь затем сливают, а анионит тщательно отмывают дистиллированной или деминерализованной водой до нейтральной реакции промывных вод при испытании фенолфталеином. . " "

В лаборатории полезно иметь две такие установки: одна находится в работе, а другая - резервная. Пока регенерируют одну установку, другая - в работе.

Из ионообменных смол *, изготовляемых в СССР, в качестве катионитов можно использовать иониты марок КУ-2, СБС, СБСР, МСФ или СДВ-3.

Для получения особо чистой воды, по качеству превосходящей бидистиллят, рекомендуется применять иониты КУ-2 и ЭДЭ-10П**. Вначале иониты с зернением около 0,5 мм переводят соответственно в H- и ОН-формы путем обработки КУ-2 1%-ным раствором соляной кислоты, а ЭДЭ-10П 3%-ным раствором едкого натра, пот еле чего хорошо промывают. Затем их смешивают в объемном соотношении КУ-2: ЭДЭ-10П = 1,25: 1 и смесь помещают в колонку из плексигласа диаметром около 50 мм и высотой 60-70 см.

Дно и верхняя пробка колонки должны быть также из плексигласа, водоподводящая и сточная трубки - из полиэтилена или же из алюминия.

Для получения особо чистой воды применяют обычную дистиллированную воду, которую пропускают через колонку со смесью ионитов. Один килограмм такой смеси может очистить до 1000 л дистиллированной воды. Очищенная вода должна иметь удельное сопротивление 1,5-2,4*10 -7 1/(ом*см). Эту смесь ионитов не рекомендуется применять для деминерализации водопроводной воды, так как иониты при этом быстро насыщаются. Когда удельное сопротивление очищенной воды начнет уменьшаться, очистку воды прекращают, а иониты регенерируют. Для этого смесь ионитов высыпают из колонки на лист фильтровальной бумаги, разравнивают, закрывают другим листом такой же бумаги оставляют сохнуть. Или же иониты из колонки пересыпают в фарфоровую воронку Бюхнера и отсасывают на ней до получения воздушно-сухой массы.

Воздушно-сухую массу помещают в делительную воронку соответствующей емкости так, чтобы смесь ионитов занимала около "Д. После этого в делительную воронку добавляют 3%-ный раствор NaOH, заполняя воронку приблизительно на 3Д, и быстро перемешивают. При этом происходит мгновенное разделение ионитов. Нижний слой, содержащий катионит КУ-2, спускают через кран делительной воронки в сосуд с водой и многократно промывают с применением декантации до тех пор, пока проба промывной воды не даст нейтральную реакцию при добавлении I-2 капель фенолфталеина.

Верхний слой, содержащий анионит ЭДЭ-10П, сливают через горло делительной воронки также в сосуд с водой. Иониты регенерируют, как описано выше, каждый ионит отдельно, и после этого снова применяют их для очистки воды.

Деминерализованную (обессоленную) воду получают из водопроводной питьевого качества, предварительно подвергнутой тщательному анализу, так как в ней содержится значительное количество растворенных и взвешенных веществ.

Деминерализация воды (освобождение от присутствия нежелательных катионов и анионов) проводится с помощью ионного обмена и методов разделения через мембрану.

Ионный обмен основан нa использовании ионитов - сетчатых полимеров разной степени сшивки, с гелевой или микропористой структурой, ковалентно связанных с ионогенными группами. Дис­социация этих групп в воде или растворах дает ионную пару - фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора. Отечественная промышленность выпускает ионообменные смолы:

Ионообменные катиониты (КУ-2, КУ-2-8ч, СК-3), которые способны обменивать свой ион водорода на катионы (Mg 2+ ; Ca 2+ и др.); В Н-форме (катионит с подвижным атомом водорода) они обмени­вают все катионы, содержащиеся в воде.

Ионообменные аниониты (АВ-17-8ч, АВ-17-10п), обменива­ющие свой гидроксил (ОН~) на анионы: SO4"; Сl и др. в ОН-форме (анионит с подвижной гидроксильной группой) обменивают все анионы, содержащиеся в воде.

Каждый килограмм смолы способен очистить до 1000 л воды и более. Качество воды контролируют по электропроводности. Как только ионит прекращает связывать ионы, электропроводность возрастает.

Катиониты - смолы с кислой группой (карбоксильной или сульфоновой). Для их регенерации (восстановления способности обменивать ион водорода) применяют 5%-ный раствор хлористо­водородной кислоты.

Аниониты - чаще всего продукты полимеризации аминов с формальдегидом. Для регенерации используют 5 %-ный раствор натрия гидрокарбоната или натрия гидрооксида.

Существует два типа колоночных ионообменных аппаратов: с раздельными и со смешанными слоями катионов и анионов. Ап­параты 1-го типа состоят из двух последовательно расположенных колонок, первая из которых заполняется катионитами, а вторая - анионитами. Аппараты 2-го типа состоят из одной колонки, за­полненной смесью этих ионообменных смол. Питьевую воду пода­ют в колонки снизу вверх, через слой катионита, затем на слой анионитов, фильтруют от частиц разрушенных ионообменных смол и нагревается в теплообменнике до 80 - 90 °С.

Ионообменные смолы могут быть гранулированными, в виде волокон, губчатых смол, жгутов (лент), последовательно переме­щающихся через сорбционную ванну, промывочную ванну, за­тем через бак регенерации и отмывки. Ионообменные волокна изнашиваются медленнее, чем гранулированные. Меньше подвер­жены разрушению магнитные гранулы.



Ионообменная технология обеспечивает классическое обессоливание воды и является экономной. Однако имеет ряд недостат­ков: 1) ионообменные смолы требуют периодической регенера­ции; 2) при длительном использовании могут стать субстратом для развития микроорганизмов, поэтому требуется периодиче­ская дезинфекция используемых смол.

Ионообменная установка состоит из 3-5 пар катионитовых и анионитовых колонок (рис.1). Водопроводная вода

Обессоленная вода

Рис. 1. Принцип работы ионообменной установки

Среди методов разделения через мембрану можно выделить: обратный осмос, ультрафильтрацию, диализ, электродиализ, испарение через мембрану. Эти методы основаны на использовании перегородок, обладающих селективной проницаемостью, благодаря чему возможно получение воды без фазовых и химических превращений.

Обратный осмос (гиперфильтрация) - переход растворителя (воды) из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное рабочее давление солевого раствора намного больше осмотического. Движущей силой обратного осмоса называют разность давлений по обе стороны мембраны. Для разделения применяют мембраны двух

1. Пористые -Селективная проницаемость основана на адсорбции молекул воды поверхностью мембраны и ее порами. УАМ 50 м, УАМ 100 м, УАМ 150 м - 125 А, УАМ 200 м УАМ 300 м и УАМ 500 м.

2. Непористые диффузионные мембраны образуют водород­ные связи с молекулами воды на поверхности контакта. Под дейст­вием избыточного давления эти связи разрываются, молекулы воды диффундируют в противоположную сторону мембраны, а на образовавшиеся места проникают следующие. Таким образом, вода как бы растворяется на поверхности и диффундирует внутрь слоя мембраны. Выпускаются гиперфильтрационные ацетатцеллюлозные мембраны МГА-80, МГА-90, МГА-95, МГА-100.



Установка обратного осмоса состоит из насоса высокого давле­ния, одного или нескольких пермиаторов и блока регулирования, поддерживающего оптимальный рабочий режим. Каждый из пер­миаторов содержит большое количество (до 1 млн) полых воло­кон (мембран). В качестве мембран используют эфиры целлюлозы (ацетаты), полиамиды и др.

Воду подают в пермиатор, омывая волокна с внешней сторо­ны. Под давлением выше осмотического она проникает внутрь полых трубок, т.е. уходит от солей, собирается внутри трубок, а «концентрат» солей выливается в сток.

По ходу движения воды в пермиатор устанавливают угольный фильтр для удаления хлора.

Методом обратного осмоса удаляются более 90 % солей, ВМВ, бактерии и даже некоторые вирусы.

Метод имеет много положительных свойств: простота; произ­водительность, не зависящая от солесодержания в исходной воде; широкий выбор полупроницаемых мембран; экономичность - из 10 л питьевой воды получается 7,5 л воды очищенной; затраты энергии в 10-16 раз меньше, чем при дистилляции. Данный принцип лежит в основе работы промышленных уста­новок «Роса», УГ-1 и УГ-10.

Для получения сверхчистой воды сочетают методы ионного обмена и обратного осмоса.

Улътрафильтрация - процесс мембранного разделения растворов высокомолекулярных соединений под действием разности давлений. Данный метод используют, когда осмотическое давление несоизмеримо мало в сравнении с рабочим давлением. Движущей силой является разность давлений - рабочего и атмосферного. Ультрафильтрация воды через мембрану с диаметром пор 0,01 мкм позволяет на 100% освободить питьевую воду от солей, органи­ческих и коллоидных веществ и микроорганизмов.

Электродиализ. Механизм разделения основан на направлен­ном движении ионов в сочетании с селективным действием мемб­ран под влиянием постоянного тока. В качестве ионообменных мембран применяются:

Катионитовые марки МК-40 с катионитом КУ-2 в Na-форме и основой на полиэтилене высокой плотности и МК-40л, армированная лавсаном;

Анионитовые марки МА-40 с анионитом ЭДЭ-10П в Сl-форме на основе полиэтилена высокой плотности и МА-41л - 1 мембрана с сильноосновным анионитом АВ-17, армированная лавсаном.

Воду помещают в ванну, разделенную на три части селективными ионообменными мембранами. Мембраны, имеющие отрицательный заряд (катиониты) проницаемы для катионов, имеющие положительный за­ряд (аниониты) - для анионов. Ионообменные мембраны не сор­бируют ионы, а селективно пропускают их.

Через ванну пропускают постоянный электрический ток, все ионы солей, находящихся в воде, начинают передвигаться к мемб­ранам, имеющим противоположный заряд: катионы - к катоду, анионы - к аноду. Ионы солей, удаленные из камеры обессоливания, концентрируются соответственно в соседних камерах. Ос­таточное солесодержание 5 - 20 мг/л.

Выпускаются электродиализные установки ЭДУ-100 и ЭДУ-1000 производительностью 100 и 1000 м 3 /сут.

Испарение через мембрану. Растворитель проходит через мембрану и в виде пара удаляется с ее поверхности в потоке инертного газа или под вакуумом. Для этой цели используют мембраны из целлофана, полиэтилена, ацетатцеллюлозы.

Преимущество мембранных методов, все больше внедряемых в производство, - значительная экономия энергии. Также сравни­тельно легко возможно регулировать качество воды. Недостатком методов считают опасность концентрационной поляризации мембран и пор, что может вызвать прохождение нежелательных ионов или молекул в фильтрат.

Деминерализованная вода используется для мойки стеклодрота, ампул, вспомогательных материалов и питания аквадистилляторов при получении воды очищенной (дистиллированной) и воды для инъекций.

Получение воды очищенной (дистиллированной )

Вода очищенная ФС 42-2619-89 (Aqua purificata), используемая в производстве инъекционных лекарственных форм, должна быть максимально химически очищена и отвечать соответствующей НТД. В каждой серии полученной воды обязательно проверяют значение рН (5,0-6,8), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция и тяжелых металлов. Допускается наличие аммиака - не более 0,00002%, сухого остатка - не более 0,001%. Для непрерывной оценки качества получаемой воды используется измерение удельной электропроводности. Однако метод недостаточно объективен, так как результат зависит от степени ионизации молекул воды и примесей.

Воду очищенную получают методом дистилляции, перегонки водопроводной или деминерализованной воды в дистилляционных аппаратах различных конструкций. Основными узлами любого дистилляционного аппарата являются испаритель, конденсатор и сборник. Сущность метода перегонки заключается в том, что исходную воду заливают в испаритель и нагревают до кипения. Происходит фазовое превращение жидкости в пар, при этом водяные пары направляются в конденсатор, где конденсируются и в виде дистиллята поступают в приемник. Такой метод требует затрат большого количества энергий, поэтому в настоящее время на некоторых заводах получают воду, очищенную методами разделения через мембрану.

Получение воды для инъекций в промышленных условиях

Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqua pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна быть стерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ XI издания, с. 187-192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ XI издания, с. 183-185.

Оборудование для получения воды очищенной и воды для инъекций

В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводи­тельных корпусных аппаратов, термокомпрессионных дистилля­торов различных конструкций и установок обратного осмоса.

К колонным многокамерным аппаратам относятся прежде всего многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/ч.

Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенность колонных аппаратов в том, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий - в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из 2-го и 3-го корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.

Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистил­лята является применение дистилляционных аппаратов соответ­ствующих конструкций, в которых исключена возможность пере­броса капельно-жидкой фазы через конденсатор в сборник. Это до­стигается устройством специальных ловушек и отражателей, высо­ким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испа­рителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, так как чрезмерный нагрев ведет к бурному ки­пению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следо­вательно, выделение капелек воды в паровую фазу.

На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора «Mascarini» -произво­дительность этого аппарата 1500 л/ч. Он снабжен прибором контро­ля чистоты воды, бактерицидными лампами, воздушными фильтра­ми, прибором для удаления пирогенных веществ, а также установкой двойной дистилляции воды производительностью 3000 л/ч.

Трехкорпусной аквадистиллятор «Финн-аква» (Финляндия) функционирует за счет использования деминерализованной воды(рис. 2).

Рис. 2. Аквадистиллятор «Финн-аква»:

1 - регулятор давления; 2 - конденсатор-холодильник; 3 - теплообменник

камер предварительного нагрева; 4 - парозапорное устройство; 5 - зона

испарения; 6,7,8 - труба; 9 – теплообменник

Вода поступает через регулятор давления в конденсатор, проходит теплообменники камер предварительного нагрева, а после нагревания поступает в зону испарения, состоящую из системы трубок, обогреваемых внутри греющим паром. Нагретая вода подается на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним и нагревается до кипения.

В испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, движущийся снизу вверх со скоростью 20- 60 м/с. Центробежная сила, возникающая при этом, обеспечивает стекание капель в нижнюю часть корпуса, прижимая их к стенкам. Наиболее совершенными в настоящее время считаются термо­компрессионные дистилляторы (рис. 3).

Их преимущество перед дистилляторами других типов заключается в том, что для получения 1 л воды для инъ­екций необходимо израсходовать 1,1 л холодной водопроводной воды. В других аппаратах это соотношение составляет 1:9- 1:15. Принцип работы аппарата заключается в том, что образую­щийся в нем пар, перед тем как поступить в конденсатор, прохо­дит через компрессор и сжимает­ся. При охлаждении и конденса­ции он выделяет тепло, по вели­чине, соответствующей скрытой теплоте парообразования, которая. затрачивается на нагревание ох­лаждающей воды в верхней части трубчатого конденсатора. Питание аппарата водой осуществляется в направлении снизу вверх, выход дистиллятора - сверху вниз. Про­изводительность дистиллятора до 2,5 т/ч. Качество получаемой апирогенной воды высокое, так как капельная фаза испаряется на стенках трубок испарителя. Нагревание и кипение в трубках происходит равномерно, без перебросов, в тонком слое. Задерживанию капель из пара способст­вует также высота парового пространства. Недостатки аппарата - сложность устройства и эксплуатации.

Рис. 3. Принцип работы термокомпрессионного дистиллятора: 1 - конденсатор-холодильник; 2 - паровое пространство; 3 - компрессор; 4 - регу­лятор давления; 5 - камера предвари­тельного нагрева; 6* - трубки испарителя

Наиболее широко распространенным до последних лет мето­дом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является серьезным недостатком. Среди других недостатков следует отме­тить громоздкость оборудования и большую занимаемую им пло­щадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.

Этих недостатков лишены новые методы мембранного разде­ления, все больше внедряемые в производство. Они протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии, сопоставимых с минимальной теоретически определяемой энергией разделения.

Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений. Для получения воды для инъекций в практическом отноше­нии представляют интерес следующие аппараты.

С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производитель­ность ее по питающей воде 500 л/ч, получаемая после этой установки высокоочищенная вода, свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.

Установка (УВВ) включает блоки предфильтрации, обратного осмоса и финишной очистки.

Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.

Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока, один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембра­ны и содержащий повышенное количество солей (концентрат) отводится из установки. Для обеспечения работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1л высокоочищенной воды необходимо израсходовать приблизительно 3 л воды водопроводной. При этом скорость слива достаточно высока, что устраняет вредное влияние концентрированной поляризации на работу установки.

В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий.

После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последо­вательно соединенных фильтров - катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов.

Окончательная доочистка воды проводится в двух ультра­фильтрационных аппаратах с полыми волокнами АР-2,0, предназ­наченных для отделения органических микропримесей (коллоид­ных частиц и макромолекул).Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность - 720 л/ч, вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем - через смешанный слой ионитов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарствен­ных форм, а концентрат используют как техническую воду или повторно отправляют на очистку.

Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически целесообразными и перспективными.

В последнее время уделяют внимание использованию воды деминерализованной вместо очищенной. Это связано с тем, что дистилляторы, особенно электрические, часто выходят из строя. Соли, содержащиеся в исходной воде, образуют накипь на стеклах испарителя, что ухудшает условия дистилляции и снижает качество воды.

Для обессоливания (деминерализации) воды применяют различные установки. Принцип их действия основан на том, что вода освобождается от солей при пропускании ее через ионообменные смолы – сетчатые полимеры гелевой или микропористой структуры, ковалентно связанные с ионогенными группами. Диссоциация этих групп в воде дает ионную пару:

Фиксированный на полимерном носителе ион;

Подвижный – противоион, который обменивается на ионы одноименного заряда.

Основной частью установок для деминерализации воды являются колонки, заполненные катионитами и анионитами.

Активность катионитов определяется наличием карбоксильной или сульфоновой группы, обладающей способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов.

Аниониты – сетчатые полимеры, способные обменивать свои гидроксильные группы на анионы.

Установки имеют также емкости для растворов кислоты, щелочи и воды дистиллированной, необходимых для регенерации смол. Регенерация катионитов осуществляется хлороводородной или серной кислотой. Аниониты восстанавливаются раствором щелочи (2-5%).

Обычно ионообменная установка содержит 3-5 катионитных и анионитных колонок. Непрерывность работы обеспечивается тем, что одна часть колонок находится в работе, другая – на регенерации.

Водопроводная вода проходит через ионообменные колонки, затем подается на фильтр, задерживающий частицы разрушения ионообменных смол.

Для предупреждения микробной контаминации получаемая вода нагревается до 80-90 0 С.

Деминерализатор целесообразно использовать в межбольничных, крупных больничных и других аптеках для подачи обессоленной воды в дистилляторы и в моечные комнаты для мытья посуды.

Производительность деминерализатора 200 л/час.

8. Обратный осмос

Обратный осмос (гиперфильтрация) – метод разделения растворов, заключается в том, что раствор под давлением 3-8 МПа подается на полупроницаемую мембрану, пропускающую растворитель и задерживающую полностью или частично молекулы или ионы растворенного вещества.

Этот метод впервые был предложен в 1953 году Ч.Е.Рейдом для обессоливания воды.

Движущей силой Р обратного осмоса является разность давлений: осмотического давления раствора (П ) и давления солевого раствора над мембраной (Р).

Р=Р-П

Прямой осмос – односторонний самопроизвольный перенос растворителя через полупроницаемую мембрану (перегородку) с целью выравнивания концентрации веществ по обе ее стороны.

Обратный осмос – фильтрование водных систем (воды) из раствора через полупроницаемые мембраны с целью отделения растворенных солей, молекул органических веществ с размерами большими молекул воды, а также взвешенных примесей и коллоидных частиц.

Установки для обратного осмоса экономичны в эксплуатации, высокопроизводительны. Они надежно очищают воду от двух-, трех-, четырехвалентных неорганических веществ, органических веществ, коллоидов, частично от пирогенов. Отрицательным моментом является то, что мембраны довольно дорогостоящи.

Качество воды, получаемой методом ионного обмена и обратного осмоса, контролируется по величине электропроводности.

Существует ошибочное мнение, что вода по своему составу является нейтральным жидким раствором. Но это не совсем так. В воде есть соли, присутствие которых в особых условиях делает воду электрически и химически активной. Это отрицательно сказывается на работе выпускаемых изделий и функциональности отдельных видов оборудования. Важным звеном в производственных технических процессах является особая стадия - деминерализация воды .

Процесс, при использовании которого из воды удаляются все минеральные вещества, называют процессом деминерализации воды . Существует четыре способа деминерализации воды: деионизация, обратный осмос, дистилляция и электродиализ.

Деионизация - это процесс, при проведении которого применяют метод ионного обмена. При проведении деионизации вода проходит обработку в двух слоях ионообменного материала. Это делается с той целью, чтобы удаление всех присутствующих в воде солей было наиболее эффективным. Одновременно или последовательно, при деионизации используются катиобменная смола и аниобменная смола. Все растворимые в воде соли состоят из катионов и анионов. Далее смесь двух указанных смол в деминерализируемой воде полностью заменяет их на ионы водорода Н+ и гидроксила ОН-. В результате проведения химической реакции, эти ионы объединяются и происходит создание молекулы воды. При таком процессе происходит фактически полное обессоливание воды. Очень широкое распространение деионизированная вода получила в промышленности, химической, фармацевтической отраслях, при промышленной обработке кожи. Ранее такая вода применялась при производстве электронно-лучевых телевизоров.

Электродиализ - метод, основанный на способности перемещения под действием электрического поля в воде ионов. Снижение концентрации солей происходит в ограниченном ионообменными мембранами объеме.

Метод дистилляции основывается на выпаривании с последующей концентрацией пара обрабатываемой воды. Данный способ деминерализации воды не получил широкого распространения, так как является слишком энергоемким, более того, в процессе дистилляции образуется накипь на стенках испарителя.

Наиболее распространенным способом деминерализации воды является . Этот способ деминерализации воды давно признан высокопрофессиональным. Изначально способ очистки воды методом обратного осмоса был предложен для опреснения морской воды. Однако в последующем выяснилось, что способ деминерализации воды методом обратного осмоса вместе с фильтрацией и ионным обменом способен значительно расширить возможности очистки воды.

Принцип деминерализации воды методом обратного осмоса заключается в том, что вода "проталкивается" через тонкопленочную полупроницаемую мембрану. Поры мембраны настолько малы, что пройти через них может только вода и низкомолекулярные газы, к числу которых относят кислород и углекислый газ. В результате такой обработки все примеси остаются на мембране и в дальнейшем сливаются в дренаж.

По эффективности очистки мембранные системы не имеют конкурентов. Они способны очистить воду на 97-99,99% по любому из видов загрязнений. В результате при применении метода обратного осмоса получается вода дистиллированная или сильно обессоленная. Метод путем обратного осмоса имеет свои особенности. Одной из основных таких особенностей является то, что проводить глубокую очистку на мембране можно только той воды, которая прошла предварительную комплексную очистку от песка, ржавчины и прочих аналогичных водонерастворимых взвесей.

Особенно важно, чтобы подготавливаемая к деминерализации вода была очищена от хлора и хлорорганических соединений, способных разрушить материал мембраны.

Как понять, что вода абсолютно деминерализована? Параметры воды после деминерализации должны соответствовать следующим показателям: значение удельного электрического сопротивления должно находиться в пределах 3-18 МоМ*см при температуре водной среды в 20°С; уровень pH должен составлять 6,5-8; содержание кремниевой кислоты - менее 20 мкг/л; полная жесткость - менее 1 ммоль/л.



Поделиться