Определение остаточного хлора в воде. Чем опасно хлорирование водопроводной воды? Аналитический контроль процесса хлорирования

Термины и определения

Свободный хлор- хлор, присутствующий в воде в виде хлорноватистой кислоты ион гипохлоритов или растворенного элементарного хлора.

Связанный хлор- часть общего хлора присутствующая в воде в виде хлораминов и органических хлораминов.

Общий хлор-- хлор, присутствующий в воде в виде свободного хлораили связанного или обоих вместе.

Хлорамины- производные аммиака, образованные путём замещения одного, двух или трех атомов водорода атомами хлора (монохлорамин NH 2 Cl, дихлорамин NHCl 2 , трихлорид азота NCl 3) и все хлорированные производные соединения органического азота определённые по ИСО 7393-1

Таблица 2

Термины и их синонимы, относящиеся к соединениям хлора в воде

Методы определения хлора в воде

Титриметрический метод

ИСО 7393-1 устанавливает титриметрический метод с использованием N 2 N-диэтил-1,4-фенилендиаминсульфата (ЦПВ-1) для определения свободного и общего хлора в воде (от 0,0004 до 0,07 ммоль/л или от 0,03 до 5 мг/л).

Морская вода и вода, содержащая бромиды и йодиды, составляют группу веществ, для анализа которых необходимы особенные методики.

Данный метод применяют для обычных концентраций общего хлора в питьевой воде в пересчете на хлор (Cl 2),а при более высоких концентрациях контроль проводят путем разбавления проб.

Для концентраций свыше 0,07 ммоль/л можно применять метод, описанный в ИСО 7393-3

Сущность метода заключается во взаимодействии свободного хлора с ЦПВ-1 с образованием при рН 6,2-6,5 соединения красного цвета. Затем проводят титрирование соединения стандартным раствором соли Мора до исчезновения красного цвета.

Реактивы

Вода, не содержащая окисляющих и восстанавливающих веществ. Чтобы получить воду нужного качества, деминерализованную или дистиллированную, воду сначала хлорируют до концентрации хлора 0,14 ммоль/л (10 мг/л) и хранят в плотно закрываемой стеклянной бутыли для кислот. Затем воду дехлорируют ультрафиолетовым излучением или солнечным светом в течение нескольких часов или активированным углём. Окончательно проверяют качество, применяя методику описанную ниже:

в две конические колбы вместимостью 250 мл помещают последовательно: а) в первую - 100 мл воды, качество которой нужно определить, и около 1 г иодида калия; перемешивают и через 1 мин добавляют 5 мл буферного раствора или 5 мл реактива ЦВП-1.

б) во вторую - 100 мл воды, качество которой необходимо проверить, добавив одну или две капли раствора гипохлорита натрия, затем через 2 мин 5 мл буферного раствора или 5 мл реактива ЦВП-1.

В первой колбе не должно происходить окрашивание, в то время как во второй появляется бледно-розовая окраска.

Буферный раствор рН 6,5 . Последовательно растворяют в воде 24 г безводного двухзамещенного фосфорита натрия (Na 2 НPO 4) или 60,5 г двенадцативодного двухзамещенного фосфорита натрия (Na 2 PO 4 *12H 2 O) или 46 г однозамещенного фосфата калия (KH 2 PO 4). Добавляют 100 мл раствора трилона Б концентрацией 8 г/л (или 0,8 г твердого вещества).

Если нужно добавляют 0,020 г хлорида ртути (II)(HgCl 2), чтобы предотвратить рост плесени и мешающее влияние следов иодида в реактивах при проведении испытаний на имеющийся свободный хлор.

Полученный раствор разбавляют до 1 л перемешивают.

Раствор ЦВП-1, 1,1 г/л. Смешивают 250 мл воды, 2,1 мл серной кислоты (g =1,84) и 25 г раствора трилона Б концентрацией 8 г/л (или 0,2 твердого вещества). В этой смеси растворяют 1,1 г безводного ЦВП-1 или 1,5 г пентагидрата ЦВП-1, разбавляют водой до 1 л и перемешивают.

Реактив хранят в темной бутылке, защищенной от нагревания. Раствор обновляют через месяц хранения или после его обесцвечивания.

Кристаллы иодид калия

Соль Мора, основной раствор - 0,056 моль/л. Растворяют 22 г гексагидрата аммоний-сернокислого железа (II) (соли Мора) приблизительно в 250 мл воды, содержащей примерно 5 мл серной кислоты (g =1,84) в мерной колбе вместимостью 1 л. Разбавляют водой до метки и перемешивают. Хранят в затемненной склянке.

Стандартный раствор перед использованием или ежедневно при большом количестве определений готовят следующим образом:

в мерную коническую колбу 250 мл помещают 50 мл основного раствора соли Мора, приблизительно 50 мл воды, 5 мл ортофосфорной кислоты (g =1,71), и 4 капли индикатора дефениламинсульфоната бария. Титруют раствором бихромата калия. Конечная точка титрования наступает, когда одна капля вызывает интенсивное темно-красное окрашивание, которе не изменяется после последующего добавления раствора бихромата калия.

Концентрацию (C 1 ) Cl 2 , выраженную в ммоль/л, вычисляют по формуле:

C 1 =V 2 *(C 2 /V 1 ),

где C 2 - концентрация стандартного раствора бихромата калия, в данном случае 100 ммоль/л;

V 1 - объем основного раствора соли Мора, мл; в данном случае 50 мл;

V 2 - объем стандартного раствора бихромата калия, использованный при титровании, мл.

Примечание. Когда V 2 становится меньше чем 22 мл, готовят свежий раствор.

Стандартный раствор соли Мора, с - 2,8 ммоль/л.

Помещают 50 мл свежестандартизированного основного раствора в мерную колбу вместимостью 1 л. Разбавляют до метки и перемешивают. Помечают темную бутылку.

Такой раствор готовят по мере необходимости или ежедневно, если делают большое количество определений.

Концентрацию (C 1 ) Cl 2 , выраженную в ммоль/л, вычисляют по уравнению:

C 1 =C 1 /20

Раствор арсената натрия (NaAsO 2) c=2г/л, или раствором тиоацетамида (CH 3 CSNH 2).

Раствор хлорноватистого натрия , с(Cl 2), около 0,1 г/л. Готовят путем разбавления концентрированного раствора хлорноватистого натрия.

Раствор индикатора дефениламинсульфоната бария , 3 г/л. Разбавляют дефениламин-сульфонат бария [(C 2 H 5 -NH-C 2 H 4 SO 3)Ba] в 100 мл воды.

Стандартный раствор бихромата калия , с(1/6K 2 Cr 2 O 7)=100 ммоль/л. Взвешивают в точности до миллиграмма 4,904 г безводного бихромата калия. Растворяют в мерной колбе вместимостью 1 л.

Приборы и оборудование

Используется обычное лабораторное оборудование и микробюретку вместимостью до 5 мл с делением 0,02 мл.

Необходимую посуду готовят путем заполнения ее хлорноватистого натрия, затем через 1 час тщательно ополаскиваю водой. Во время исследований одну партия посуды следует иметь для определения свободного хлора, а другую для определения общего хлора, чтобы избежать загрязнения.

Методика определения

Определение начинают сразу же после отбора проб. Во всех случаях следует избегать яркого света, взбалтывания, подогрева.

Берут две исследуемые порции, каждую по 100 мл. Если концентрация превышает 0,07 ммоль/л (5 мг/л), необходимо брать меньший объем исследуемой пробы или разбавлять водой до 100 мл.

Определение свободного хлора

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1 и первую исследуемую порцию. Перемешивают и сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V 3

Определение общего хлора

Быстро помещают в коническую колбу вместимостью 250 мл, последовательно 5 мл буферного раствора, 5 мл реактивного раствора ЦВП-1, вторую порцию и около 1 г иодида калия.

Перемешивают и через 2 мин титруют до обесцвечивания раствором соли Мора. Если в течении 2 мин наблюдается изменения окраски, то продолжают титровать до обесцвечивания. Записывают объем V 4 мл, использованный при титрировании.

Если качество воды не известно, возможна сильно кислая или сльно щелочная, или же вода с высоким содержанием солей, то следует убедиться, что объем добавленного буферного раствора достаточно для доведения рН воды до 6,2-6,5. Если же этого нет, используют большой объем буферного раствора.

Если в пробе присутствует марганец, то определяют влияние окисленного марганца, выполняя дополнительное определение. Используют порцию исследуемой пробы, предварительно обработанной раствором арсенита натрия или тиоацетамида, чтобы нейтрализовать все окисленные соединения, кроме окисленных соединений марганца. Для этого исследуемую порцию помещают в коническую колбу вместимостью 250 мл, добавляют 1 мл раствора арсенита натрия или раствором тиоацетамидаи перемешивают. Вновь добавляют 5 мл буферного раствора и 5 мл реактива ЦВП-1. Сразу же титруют до обесцвечивания раствором соли Мора. Записывают объем V 5 , мл, соответствующий окисленному марганцу.

Выражение результатов

Расчет концентрации свободного хлора

Концентрацию свободного хлора c(Cl 2 )

c(Cl 2 )=(c 3 (V 3 -V 2 ))/V 5

где c 3 -концентрация раствора соли Мора, ммоль/л;

V 2 -объем исследуемой пробы, мл;

V 3 - объем раствора соли Мора, используемый при титрировании, мл;

V 5 - объем соли Мора, используемый для устранения влияния марганца. При отсутствии марганца V 5 =0 мл.

Расчет концентрации общего хлора

Концентрацию общего хлора c(Cl 2 ) , выраженную в ммоль/л, вычисляю по уравнению:

c(Cl 2 )=(c 3 (V 4 -V 3 ))/V 5

где V 4 - объем раствора соли Мора, используемый при титровании, мл.

Переход от молярной концентрации к массовой. Концентрация хлора, выраженная в моль/л, может быть выражена в г/л умножением на коэффициент пересчета 70,91.

Мешающее влияние

Могут быть выделены два вида мешающих влияний.

  • 1)Мешающее влияние соединений хлора, содержащих диоксид хлора. Эти влияния могут корректироваться путем определения диоксида хлора в воде.
  • 2)Мешающее влияние других соединений, кроме соединений хлора. Окисление ЦВП-1 вызывается не только соединениями хлора. В зависимости от концентрации и потенциала химического окисления реактив подвергается воздействию и других окислителей. Особенно следует упомянуть следующие вещества: бром, йод, бромамиды, иодамиды, озон, перекись водорода, хромат, окисленный марганец, нитрат, железо (III) и медь. При наличии меди (II) (менее 8 мг/л) и ионов железа (III) (менее 20 мг/л) помехи устраняют добавлением трилона Б в буферный раствор и в раствор ЦВП-1.

Отчет об определении

Метод иодиметрического титрирования

ИСО 7393-3 устанавливает метод иодиметрического титрирования для определения общего хлора в воде.

Некоторые вещества оказывают мешающие в ходе определения, о чем будет сказано ниже.

В приложении стандарта представлен метод прямого титрирования. Его обычно применяют для определения концентраций хлора выше 7 мкмоль/л (0,5 мг/л) в обработанной питьевой воде.

Сущность метода заключается во взаимодействии проб воды с общим хлором и раствором иодида калия с выделением свободно йода, который сразу же восстанавливается известным избытком стандартного раствора тиосульфата, предварительно добавленного в раствор. Затем титруют избытком тиосульфата стандартным раствором иодида калия.

Реактивы

Вода , не содержащая хлора и других восстанавливающих веществ.

Кристаллы иодида калия (KI).

Раствор фосфорной кислоты (H 3 PO 4), приблизительно 0,87 моль/л. Растворяют 64 г фосфорной кислоты, охлаждают и разбавляют до 1 л.

Стандартный титрированный раствор иодида калия, с(1/6KIO 3)=10 ммоль/л. Взвешивают 0,36 г с точностью до 1 г сухого иодида калия.

Стандартный титрированный раствор тиосульфата натрия с(Na 2 S 2 O 3 *5H 2 O)=10ммоль/л. Растворяют 2,48г тиосульфата натрия приблизительно в 250мл воды в мерной колбе вместимостью 1л, разбавляют до метки водой и перемешивают.

Проверку титра раствора проводят ежедневно или непосредственно перед использованием следующим образом: помещают 200мл воды в коническую колбу вместимостью 500 мл. Добавляют приблизительно 1г иодида калия, затем вводят с помощью пипетки 10мл раствора тиосульфата натрия, 2мл фосфорной кислоты и 1 мл раствора крахмала. Сразу же титруют стандартным титрованным раствором иодида калия до появления синей окраски, сопровождающейся не менее 30с. Записывают объем иодида калия, использованный на титрирование. Титр С 1 раствора тиосульфата натрия, выраженный в ммоль/л вычисляют по уравнению

С 1 =(V 2 -С 2 )/V 1

Где С 2 - концентрация стандартного титрированного раствора иодида калия, ммоль/л

V 1 - объем раствора тиосульфата натрия, использованный при установлении титра, мл (V1=10мл)

V 2 - объем стандартного титрированного раствора иодида калия, использованного при титрировании, мл

Раствор крахмала, 5 г/л или подобный индикатор, выпускаемый в промышленности.

Приборы и оборудования

Используют обычное лабораторное оборудование и бюретку с тонким наконечником со скоростью подачи 30капель/мл, объемом до 25мл с ценой деления 0,05мл.

Нужную посуду готовят, заполняя её раствором гипохлорита натрия с=0,1г/л, затем через 1 час тщательно ополаскивают дистиллированной водой и водой, не содержащей хлора.

Методики определения

Определение начинает сразу же после отбора проб. При проведении анализа следует избегать воздействия на пробу яркого света, перемешивания, подогрева.

Отбирают исследуемую порцию (V6), объем котрого не превышает 200мл, содержащую не более чем 0,21 ммоль/л (15г/л) общего хлора. Если количество общего хлора превышает эту концентрацию, разбавляют исследуемую порцию водой и отбирают часть исследуемой порции, объем которой не превышает 200мл.

Помещают исследуемую порцию в коническую колбу вместимостью 500мл. Добавляют поочередно 1г иодида калия, 2мл фосфорной кислоты и с помощью пипетки 10мл (V4) стандартного раствора тиосульфата натрия и затем 1мл раствора крахмала. Реагенты должны вводиться в строго определенной последовательности, так как в противном случае может иметь место нестехиометрическое превращение гипохлорита при воздействии тиосульфата.

Сразу же титруют стандартным титрированным раствором иодида калия до установления постоянной синей окраски в течении 30с., записывают объем иодида калия использованный на титрирование (V3)

Выражение результатов

Концентрация общего хлора c(Cl 2 ), выраженную ммоль/л, вычисляют по формуле

c(Cl 2 )=(V 4 * С 1 - V 3 * С 1 )/(V 2 * V 4 )

где С1 - фактическая концентрация стандартного титрированного раствора тиосульфата натрия, ммоль/л

V2 - объем исследуемой порции перед разбавлением (если оно было), мл

V3 - объем стандартного раствора иодида калия, используемый на титрирование, мл

V4 - объем стандартного раствора тиосульфата натрия, использованный на титрирование, мл (V4=10).

Мешающие явления

Окисление иодида-иона до иона вызывается не только хлором. В зависимости от концентрации и химического потенциала окисления вызывают все окислители. Поэтому данный метод может применяться только при отсутствии других окисляющих веществ; особо следует отметить бром, йод, бромамины, йодамины, озон, перекись водорода, перманганат, иодат, бромат, хромат, диоксид хлора, хлорит, окисленный марганец, нитрит, ионы железа (III), ионы меди (II) и марганца (III).

Отчет об определении

Отчет об определении должен содержать следующую информацию:

  • а) ссылку на международный стандарт ИСО 7393-1
  • б) всю информацию, необходимую для полной идентификации пробы
  • в) результаты и использованный метод их выражения
  • г) детали какого-либо процесса, не включенные в данный стандарт или рассматриваемые как не обязательные совместно с какими-либо подробностями, которые могут повлиять на результат.

Государственное санитарно-эпидемиологическое
нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение концентрации остаточного свободного хлора в питьевой и пресной природной воде хемилюминесцентным методом

МУК 4.1.965-99

Минздрав России

Москва 2000

1. Методические указания разработаны Федеральным центром госсанэпиднадзора Минздрава Российской Федерации (Н. С. Ластенко, И. В. Брагина, В. Б. Скачков ) и ВАХЗ, ЭНТЦ «ЭкМОС» (В. А. Ишутин, А. А. Стехин, И. А. Пушкин, Г. В. Яковлева, А. А. Симонов )

2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 22 марта 2000 г.

3. Введены впервые.

3.3. Материалы

Бумага фильтровальная

3.4. Реактивы

4. Требования безопасности

4.1. При работе с реактивами соблюдают требование безопасности, установленные для токсичных, едких и легковоспламеняющихся веществ по ГОСТу 12.1.005-88.

4.2. При выполнении измерений с использованием прибора ЛИК соблюдают правила электробезопасности по ГОСТу 12.1.019- 79 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускаются лица, имеющие квалификацию техника-химика с опытом работы на приборе ЛИК.

6. Условия измерений

При выполнении измерений соблюдаются следующие условия:

6.1. Приготовление растворов и подготовка проб к анализу проводятся в нормальных условиях при температуре воздуха 20 + 15 °С, атмосферном давлении 630-800 мм рт. ст., влажности воздуха до 90 %.

6.2. Измерения на приборе ЛИК проводят в условиях, рекомендуемых технической документацией к прибору ЛИК.

7. Подготовка к выполнению измерений

7.1. Подготовка к построению градуированного графика

7.1.1. Открывают водопроводный кран и через 10 минут после истечения из него воды трижды ополаскивают 2-3 литровую банку и наливают в нее 1,5-2,0 (2,5-3,0) дм 3 воды. Банку закрывают бумажной салфеткой и дают ей отстояться в течение 24 часов при комнатной температуре. РН-метром замеряют водородный показатель и серной (азотной) кислотой доводят его до значения (4,5 ± 0,2).

7.1.2. Приготовление хлорной воды.

Колбу с пришлифованной пробкой емкостью 500 см 3 трижды ополаскивают водой, приготовленной по . и наливают в нее 400 см 3 этой воды. Затем в колбу вносят навеску гипохлорида кальция или хлорированную воду с известной концентрацией активного свободного хлора в таком количестве, чтобы в 1000 см 3 исходной воды содержалось 2,0-2,5 мг остаточного хлора. После этого в колбу вносят воду, приготовленную по. до метки, закрывают ее пробкой и содержимое тщательно перемешивают встряхиванием в течение 5 мин.

7.2. Определение исходной концентрации активного свободного хлора в хлорной воде

7.2.1. Приготовление 0,005 %-ного раствора метилового оранжевого. 50 мг метилового оранжевого растворяют в дистиллированной воде, в колбе вместимостью 1000 см 3 , 1 см 3 этого раствора эквивалентен 0,0217 мг остаточного свободного хлора.

7.2.2. Приготовление 5 N раствора соляной кислоты.

В мерную колбу вместимостью 1000 см 3 наливают 60-70 см 3 дистиллированной воды и медленно, порциями прибавляют 40 см 3 концентрированной соляной кислоты, дистиллированной водой доводят объем колбы до метки.

7.2.3. Определение концентрации остаточного свободного хлора. 100 см 3 анализируемой хлорной воды наливают в фарфоровую чашку, добавляют 3 капли 5 N раствора соляной кислоты, перемешивают и быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски. Концентрацию остаточного свободного хлора вычисляют по формуле:

X = (мг/дм 3), где

Количество 0,005 %-ного раствора метилового оранжевого, пошедшего на титрование, см 3 ;

0,0217 - титр раствора метилового оранжевого;

0,04 - эмпирический коэффициент;

V - объем исходной хлорной воды пробы, см 3 .

7.4. Построение градуированного графика

7.4.1. Проведение анализа хлорной воды с исходной концентрацией остаточного свободного хлора на приборе ЛИК.

Внимание! При построении графика во избежание загрязнения реактива одна насадка дозатора пипеточного используется только для отбора реактива, а вторая - хлорной воды.

Крышку прибора передвигают до упора вперед, снимают крышку-дозатор, извлекают из реакционной камеры кювету из стекла и наливают в нее 0,1 см 3 реактива на основе люминола дозатором пипеточным. Кювету с реактивом помещают в реакционную камеру и закрывают ее крышкой-дозатором. Затем в полость крышки-дозатора вносят 0,2 см 3 хлорной воды, приготовленной по дозатором пипеточным, предварительно сменив у него наконечник.

Крышку прибора передвигают до упора назад, нажимают на нее рукой, снимают показания прибора. Определение повторяют 5 раз, вычисляют среднее значение сигнала, которое будет соответствовать исходной концентрации остаточного свободного хлора в приготовленной хлорной воде.

7.4.2. Приготовление разведений из исходной хлорной воды.

5 чистых пробирок с притертой пробкой трижды ополаскивают водой, приготовленной по . В каждую пробирку вносят соответственно:

1 - 0,5 см 3 ; 2 - 1,0 см 3 ; 3 - 1,5 см 3 ; 4 - 2,0 см 3 ; 5 - 2,5 см 3 исходной хлорной воды, приготовленной по ., в эти же пробирки вносят соответственно:

1 - 4,5 см 3 ; 2 - 4,0 см 3 ; 3 - 3,5 см 3 ; 4 - 3,0 см 3 ; 5 - 2,5 см 3 воды, приготовленной по . Пробирки закрывают пробками и содержимое тщательно перемешивают, встряхивая в течение 3 минут. Если исходная концентрация свободного активного хлора в воде была 2,0 мг/дм 3 , то: в пробирке 1 - 0,2 мг/дм 3 , в пробирке 2 -0,4 мг/дм 3 , в пробирке 3 - 0,6 мг/дм 3 , в пробирке 4 - 0,8 мг/дм 3 , в пробирке 5-1,0 мг/дм 3 .

После приготовления разведений хлорной воды их анализируют на приборе ЛИК, как указано в . и по полученным данным строят градуировочный график в координатах: величина измеряемого сигнала (отн. единицы) - концентрация свободного активного хлора (мг/дм 3).

Построенный график уточняют и корректируют только после поверки прибора ЛИК (1 раз в год) путем анализа трех разведений хлорной воды с известной концентрацией.

8. Выполнение измерений концентрации остаточного свободного хлора в водопроводной воде

8.1. Определение остаточного свободного хлора в воде

Открывают водопроводный кран и через 10 минут после истечения из него воды в мерный стакан объемом 100 см 3 отбирают 70 - 80 см 3 и анализируют ее на приборе ЛИК, как указано в . Вычисляют среднее значение сигнала и по градуированному графику определяют искомую величину концентрации остаточного свободного хлора.

8.2. Определение связанного остаточного свободного хлора

В мерный стакан объемом 100 см 3 вносят 2 капли 20 %-ной серной кислоты. Открывают водопроводный кран и через 10 минут после истечения из него воды, в стакан отбирают 50-60 см 3 воды, перемешивают 1 минуту и анализируют на приборе ЛИК, как указано в .

Вычисляют среднее значение сигнала, по градуировочному графику определяют искомую концентрацию и из полученного значения вычитают величину концентрации остаточного свободного хлора, полученную по . По разности определяют концентрацию связанного свободного хлора в виде хлор, дихлорамина.

8.3. Определение хлороемкости воды

В исходную очищенную воду порциями добавляют хлор, перемешивают, отбирают пробу объемом 100 см 3 , через 30 минут после прибавления хлора анализируют на приборе ЛИК, как указана в . Величина сигнала на приборе должна соответствовать концентрации остаточного свободного хлора 0,01-0,02 мг/дм 3 .

9. Оформление результатов измерений

Результаты измерений оформляются протоколом по форме:

Протокол №

Протокол определения остаточного хлора

1. Дата проведения анализа ______

2. Место отбора пробы ____________

3. Название лаборатории __________

4. Юридический адрес _____________

Результаты химического анализа

Ответственный исполнитель

Заведующий лабораторией

10. Контроль погрешности измерения

Контроль погрешности измерения содержания в воде хлора проводят с помощью приготовленной хлорной воды с концентрацией в ней хлора 2,0-2,5 мг/дм 3 . + Δ , то воспроизводимость измерения является удовлетворительной. Если нет, то устраняют причины.

11.02.10

Чем опасно хлорирование водопроводной воды?

Хлорирование воды - наиболее распространённый способ обеззараживания питьевой воды с применением газообразного хлора или хлорсодержащих соединений, вступающих в реакцию с водой или растворенными в ней солями. В результате взаимодействия хлора с протеинами и аминосоединениями, содержащимися в оболочке бактерий и их внутриклеточном веществе, происходят окислительные процессы, химические изменения внутриклеточного вещества, распад структуры клеток и гибель бактерий и микроорганизмов.

Дезинфекция (обеззараживание) питьевой воды осуществляется за счёт дозирования хлора, двуокиси хлора, хлорамина и хлорной извести (не путать с термином очистка питьевой воды от извести). Необходимая доза дозируемого вещества устанавливается пробным хлорированием воды: она определяется хлорпоглощаемостью воды (количество хлора, необходимое для связывания содержащихся в воде органических соединений).

С целью уничтожения микробов хлор вводят с избытком из того расчёта, чтобы через 30 мин после хлорирования воды содержание остаточного хлора было не менее 0,3 мг/л. В некоторых случаях проводится двойное хлорирование воды – до фильтрации и после чистки воды. Также при эпидемиологических катастрофах проводится суперхлорирование с последующим дехлорированием воды.

Для хлорирования воды на водопроводных очистных станциях используется жидкий хлор и хлорная известь (для станций малой производительности).
Хлорирование воды жидким хлором. При введении хлора в воду образуются хлорноватистая и соляная кислоты

НОС1 ч* Н+ + ОС1-.

Получающиеся в результате диссоциации хлорноватистой кислоты гипохлоритные ионы ОС1~ обладают наряду с недиссоциированными молекулами хлорноватистой кислоты бактерицидным свойством.

Сумму С12+НОС1+ОС1- называют свободным активным хлором.

При наличии в воде аммонийных соединений или при специальном введении в воду аммиака (аммонизация воды - см. § 114) образуются монохлорамины NH2CI и дихлорамины NHCb, также оказывающие бактерицидное действие, несколько меньшее, чем свободный хлор, но более продолжительное. Хлор в виде хлораминов в отличие от свободного называется с в я з а н н ы м активным хлором.

Количество активного хлора, необходимого для обеззараживания воды, должно определяться не по количеству болезнетворных бактерий, а по всему количеству органических веществ и микроорганизмов (а также и неорганических веществ, способных к окислению), которые могут находиться в хлорируемой воде.

Правильное назначение дозы хлора является исключительно важным. Недостаточная доза хлора может привести к тому, что он не окажет необходимого бактерицидного действия; излишняя доза хлора ухудшает вкусовые качества воды. Поэтому доза хлора должна быть установлена в зависимости от индивидуальных свойств очищаемой воды на основании опытов с этой водой.

Расчетная доза хлора при проектировании обеззараживающей установки должна быть принята исходя из необходимости очистки воды в период ее максимального загрязнения (например, в период паводков).

Показателем достаточности принятой дозы хлора служит наличие в воде так называемого остаточного хлора (остающегося в воде от введенной дозы после окисления находящихся в воде веществ). Согласно требованиям ГОСТ 2874-73, концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3- 0,5 мг/л.
Содержание в питьевой воде свободного остаточного хлора регламентируется СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества" (содержание в воде свободного остаточного хлора 0,3 – 0,5 мг/л) и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» (содержание в воде свободного остаточного хлора не более 0,05 мг/л). Лимитирующий признак вредности вещества, по которому установлен норматив – органолептический (хотя это далеко не так…).

Хлор – это злейший враг нашей современности с тех пор, как он стал применяться в качестве дезинфектора питьевой воды с 1904 года. Предотвращая одни заболевания, он является причиной появления других, более страшных болезней: проблемы с сердцем, рак, а также преждевременная старость. По иронии даже хлор, широко применяемый в качестве дезинфектора воды, оказывается опасным канцерогеном.

С одной стороны, хлорирование воды избавило человечество от риска инфекционных заболеваний и эпидемий. С другой стороны, учеными в 70-80 годы было обнаружено, что хлорированная вода способствует накапливанию в воде канцерогенных веществ. Среди населения, потребляющего хлорированную питьевую воду, были выявлены случаи рака пищевода, прямой кишки, молочной железы, гортани, заболевания печени. Потому что при взаимодействии хлора с органическими веществами, находящимися в воде, образуются химические вещества. Эти вещества – трихлометаны - являются канцерогенными, что и было доказано учеными опытным путем. Ведь, как известно, хлороформ даже у крыс вызывает рак.

Этот эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят : рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки. Но страдают не только органы пищеварения.

В чем проблема?

Наиболее важной проблемой данного метода является высокая активность хлора, он вступает в химические реакции со всеми органическими и неорганическими веществами находящимися в воде. В воде из поверхностных источников (которые в основном являются источниками водозабора) находится огромное количество сложных органических веществ природного происхождения, а также в большинстве крупных промышленных городов в воду попадают с промышленными стоками красители, ПАВ, нефтепродукты, фенолы и пр.

При хлорировании воды, содержащей вышеприведенные вещества, образуются хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды, а именно:

Хлороформ, обладающий канцерогенной активностью

Дихлорбромметан, хлоридбромметан, трибромметан - обладающие мутагенными свойствами

2,4,6-трихлорфенол, 2-хлорфенол, дихлорацетонитрил, хлоргиередин, полихлорированные бифенилы - являющиеся иммунотоксичными и канцерогенными веществами

Тригалогенметаны - канцерогенные соединения хлора

Данные вещества оказывают замедленное убийственное воздействие на организм человека. Очистка питьевой воды от хлора не решает проблемы, так как многие из опасных соединений образующиеся в воде в процессе ее хлорирования попадают в организм человека через кожу, во время мытья, приема ванн или посещения бассейна. По некоторым данным, часовое принятие ванны содержащей в избыточном количестве хлорированную воду соответствует десяти литрам выпитой хлорированной воды.

Первые попытки связать онкологическую заболеваемость населения с качеством питьевой воды были предприняты еще в 1947 году. Но вплоть до 1974 года хлорирование воды никак не связывали с онкологией. Считалось, что хлорированная вода не оказывает на здоровье человека неблагоприятного действия.

К сожалению данные по связи потребления хлорированной питьевой воды поверхностных водоисточников с частотой злокачественных новообразований у населения стали накапливаться только с 70-х годов. Поэтому до сих пор на этот счет существуют разные точки зрения. По мнению некоторых исследователей, с употреблением загрязненной воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчеты, в соответствии с которыми потребление речной воды (по сравнению с водой подземных источников) может привести к увеличению онкологической заболеваемости на 15%.

Чем опасен хлор, попадающий в организм человека

Побочный эффект от вредного воздействия хлора может быть вызван двумя способами: когда хлор проникает в организм через дыхательные пути, и когда хлор проникает через кожу. Ученые во всем мире исследуют эту проблему. Они связывают многие опасные заболевания с попаданием в человеческий организм хлора или вредных побочных продуктов хлорирования воды. К этим заболеваниям относят: рак мочевого пузыря, рак желудка, рак печени, рак прямой и ободочной кишки.

Но страдают не только органы пищеварения . Также хлор может стать причиной болезни сердца, атеросклероза, анемии, повышенного давления. Помимо этого хлор сушит кожу (вспомните ощущение стянутости кожи после бассейна), разрушает структуру волос (они начинают больше выпадать, становятся ломкими, тусклыми, безжизненными), раздражает слизистую оболочку глаз.

Эпидемиологи США провели исследование: они сравнили карту хлорирования воды с картой распределения заболеваний раком мочевого пузыря и органов пищеварения. Выявили прямую зависимость: чем больше содержание хлора в воде, тем чаще встречается заболевание.

--
Британские ученые из университета Бирмингема заявили о том, что потребление хлорированной воды во время беременности может привести к рождению детей с тяжелейшими врожденными дефектами – в частности, с пороками сердца и мозга.

Специалисты под руководством Юни Яаккола изучили данные о 400 тысячах младенцах, чтобы выяснить, как связаны одиннадцать наиболее распространенных врожденных дефектов с высоким, средним или низким содержанием химических веществ, появляющихся при хлорировании в питьевой воде.

Как известно, хлорирование – достаточно распространенный метод обеззараживания, который приводит к значительному сокращению передающихся с питьевой водой инфекций. Но одним из недостатков этого метода является образование побочных продуктов, большую часть которых составляют так называемые тригалометаны, в частности, хлороформ, дихлорбромметан, дибромхлорметан и бромоформ.

В результате исследования оказалось, что высокий уровень побочных продуктов хлорирования от 50 до 100% увеличивал риск появления трех врожденных пороков – дефекта межжелудочковой перегородки сердца (отверстие в перегородке между желудочками сердца, что приводит к смешиванию артериальной и венозной крови и хронической нехватке кислорода), так называемой волчьей пасти (расщелина в небе), а также к анэнцефалии (полное или частичное отсутствие костей свода черепа и мозга).

"Биологические механизмы, которые приводят к появлению врожденных пороков при высоком уровне побочных продуктов хлорирования, пока остаются неизвестными. Но наше исследование не только дает дополнительные свидетельства, что хлорирование может приводить к врожденным дефектам, но также показывает, что присутствие его побочных продуктов может быть связано с некоторыми конкретными пороками", – говорит Яаккола.

--
Вред хлора для здоровья человека нельзя недооценивать, отмечают врачи. Несмотря на то, что водоочистные станции используют относительно невысокие концентрации, даже они вредны для здоровья животных и человека. Вдыхание высоких концентраций хлора может быть фатальным для людей и вызывать различные болезни – от головных болей до нейротоксических реакций, возможно даже развитие раковых опухолей.

Более того, как отмечают специалисты, водные токсины попадают в организм не только через органы дыхания. Хлор лишает кожу ее естественной жировой оболочки, сушит, вызывает зуд и преждевременное старение. Даже волосы под действием хлорированной воды становятся сухими и ломкими.

Хлорирование воды – самый популярный способ ее дезинфекции, но не самый безопасный. Основные риски потребления воды из-под крана связаны с побочными продуктами, образуемыми хлором при соединении с другими веществами. Существуют данные, что это может способствовать возникновению раковых заболеваний. Более того, некачественная вода является причиной возникновения 90% заболеваний, а потребление воды хорошего качества способно продлить жизнь на 5-8 лет.

По материалам: www.bibliotekar.ru, www.ekomarket.ru, RBK.ru, РИА Новости


________________
* ТУ, упомянутые здесь и далее по тексту, являются авторской разработкой. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

4. Ограничение срока действия снято Постановлением Госстандарта СССР от 25.12.91 N 2120

5. ПЕРЕИЗДАНИЕ. Ноябрь 2009 г.


Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания остаточного активного хлора.

1. МЕТОДЫ ОТБОРА ПРОБ

1. МЕТОДЫ ОТБОРА ПРОБ

1.1. Пробы воды отбирают по ГОСТ 24481 * и ГОСТ 2874 **.
__________________
* На территории Российской Федерации действует ГОСТ Р 51593-2000 .

** На территории Российской Федерации действует ГОСТ Р 51232-98 .

1.2. Объем пробы воды для определения содержания активного хлора не должен быть менее 500 см.

1.3. Пробы воды не консервируют. Определение следует проводить немедленно после отбора пробы.

2. ЙОДОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Озон, нитриты, окись железа и другие соединения в кислом растворе выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с рН 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/дм при объеме пробы 250 см. Метод может быть рекомендован также для окрашенных и мутных вод.

2.2. Аппаратура, материалы и реактивы

ГОСТ 1770 , ГОСТ 29169 и ГОСТ 29251 , вместимостью: колбы мерные 100 и 1000 см; пипетки без делений 5, 10, 25 см; бюретка с краном 25, 50 см; микробюретка 5 см.

Колбы конические с пришлифованными пробками вместимостью 250 см по ГОСТ 25336 .

Калий йодистый по ГОСТ 4232 , х.ч., в кристаллах.

Вода дистиллированная по ГОСТ 6709 .

Хлороформ (трихлорметан).

Кислота салициловая.

Кислота уксусная ледяная по ГОСТ 61 .

Калий двухромовокислый по ГОСТ 4220 .

Кислота серная по ГОСТ 4204 .

Крахмал растворимый по ГОСТ 10163 .

Натрий углекислый кристаллический по ГОСТ 84 .

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068 .

Все реактивы, используемые в анализе, должны быть квалификации "чистые для анализа" (ч.д.а.).

2.3. Подготовка к анализу

2.3.1. Приготовление 0,1 н. раствора серноватистокислого натрия

25 г тиосульфата натрия NaSO·5HO растворяют в свежепрокипяченной и охлажденной дистиллированной воде, добавляют 0,2 г углекислого натрия (NaCO) и доводят объем до 1 дм.

2.3.2. Приготовление 0,01 н. раствора серноватистокислого натрия

100 см 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм. Раствор применяют при содержании активного хлора в пробе более 1 мг/дм.

2.3 3. Приготовление 0,005 н. раствора серноватистокислого натрия

50 см 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм. Раствор применяют при содержании активного хлора в пробе менее 1 мг/дм.

2.3.4. Приготовление 0,01 н. раствора двухромовокислого калия

0,4904 г двухромовокислого калия KCrO, взвешенного с точностью до ±0,0002 г, перекристаллизованного и высушенного при 180 °С до постоянной массы, растворяют в дистиллированной воде и доводят объем до 1 дм.

2.3.5. Приготовление 0,5%-ного раствора крахмала

0,5 г растворимого крахмала смешивают с небольшим объемом дистиллированной воды, приливают к 100 cм кипящей дистиллированной воды и кипятят несколько минут. После охлаждения консервируют, добавляя хлороформ или 0,1 г салициловой кислоты.

2.3.6. Приготовление буферного раствора рН 4,5

102 cм 1 М уксусной кислоты (60 г ледяной уксусной кислоты в 1 дм воды) и 98 cм 1 М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия CHCOONa·3HO в 1 дм воды) наливают в мерную колбу вместимостью 1 дм и доводят до метки дистиллированной водой (предварительно прокипяченной и охлажденной до 20 °С, свободной от двуокиси углерода).

2.3.7. Поправочный коэффициент 0,01 н. раствора серноватистокислого натрия определяют по 0,01 н. pacтвopy двухромовокислого калия следующим образом: в коническую колбу и с пришлифованной пробкой помещают 0,5 г йодистого калия, проверенного на отсутствие йода, растворяют в 2 cм дистиллированной воды, прибавляют 5 cм серной кислоты (1:4), затем 10 cм 0,01 н. раствора двухромовокислого калия, добавляют 80 cм дистиллированной воды, закрывают колбу пробкой, перемешивают и ставят в темное место на 5 мин. Выделившийся йод титруют тиосульфатом натрия в присутствии 1 cм крахмала, прибавленного в конце титрования.

2.3.8. Поправочный коэффициент () (0,01; 0,005 н. растворов серноватистокислого натрия) вычисляют по формуле:

где - количество серноватистокислого натрия, израсходованное на титрование, cм.

2.4. Проведение анализа

В коническую колбу насыпают 0,5 г йодистого калия, растворяют его в 1-2 cм дистиллированной воды, затем добавляют буферный раствор в количестве, приблизительно равном полуторному значению щелочности анализируемой воды, после чего добавляют 250-500 cм анализируемой воды. Выделившийся йод оттитровывают 0,005 н. раствором тиосульфата натрия из микробюретки до появления светло-желтой окраски, после чего прибавляют 1 cм 0,5%-ного раствора крахмала и раствор титруют до исчезновения синей окраски. При определении щелочности воду предварительно дехлорируют с помощью тиосульфата натрия в отдельной пробе.

При концентрации активного хлора менее 0,3 мг отбирают для титрования большие объемы воды.

2.5. Обработка результатов

Содержание суммарного остаточного хлора (), мг/дм, вычисляют по формуле

где - количество 0,005 н. раствора тиосульфата натрия, израсходованное на титрование, cм;

- поправочный коэффициент нормальности раствора тиосульфата натрия;

0,177 - содержание активного хлора, соответствующее 1 cм 0,005 н. раствора тиосульфата натрия;

- объем пробы воды, взятый для анализа, cм.

3. МЕТОД ОПРЕДЕЛЕНИЯ СВОБОДНОГО ОСТАТОЧНОГО ХЛОРА ТИТРОВАНИЕМ МЕТИЛОВЫМ ОРАНЖЕВЫМ

3.1. Сущность метода

Метод основан на окислении свободным хлором метилового оранжевого, в отличие от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

3.2. Аппаратура, материалы, реактивы

Посуда мерная лабораторная стеклянная по ГОСТ 1770 и ГОСТ 29251 , вместимостью: колбы мерные 100 и 1000 cм; микробюретка с краном 5 cм.

Капельница по ГОСТ 25336 .

Чашки фарфоровые выпарительные по ГОСТ 9147 .

Кислота соляная по ГОСТ 3118 , плотностью 1,19 г/cм.

Метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий) по ТУ 6-09-5171.

Вода дистиллированная по ГОСТ 6709 .


3.3. Подготовка к анализу

3.3.1. Приготовление 0,005%-ного раствора метилового оранжевого

50 мг метилового оранжевого растворяют в дистиллированной воде в мерной колбе и доводят дистиллированной водой до 1 дм. 1 cм этого раствора соответствует 0,0217 мг свободного хлора.

3.3 2. Приготовление 5 н. раствора соляной кислоты

В мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 cм соляной кислоты НСl и доводят дистиллированной водой до 1 дм.

3.4. Проведение анализа

100 cм анализируемой воды помещают в фарфоровую чашку, добавляют 2-3 капли 5 н. раствора соляной кислоты и, помешивая, быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски.

3.5. Обработка результатов

Содержание свободного остаточного хлора (), мг/дм, вычисляют по формуле

где - количество 0,005%-ного раствора метилового оранжевого, израсходованное на титрование, cм;

0,0217 - титр раствора метилового оранжевого;

0,04 - эмпирический коэффициент;

- объем воды, взятый для анализа, cм.

По разности между содержанием суммарного остаточного хлора, определенного йодометрическим методом, и содержанием свободного остаточного хлора, определенного методом титрования метиловым оранжевым, находят содержание хлораминового хлора ():

4. МЕТОД РАЗДЕЛЬНОГО ОПРЕДЕЛЕНИЯ СВОБОДНОГО ХЛОРА, СВЯЗАННОГО МОНОХЛОРАМИНА И ДИХЛОРАМИНА ПО МЕТОДУ ПЕЙЛИНА

4.1. Сущность метода

Метод основан на способности разных видов хлора превращать в определенных условиях восстановленную бесцветную форму диэтилпарафенилендиамина в полуокисленную окрашенную форму, которую восстанавливают опять до бесцветной ионами двухвалентного железа. Используется серия титрований раствором соли Мора для определения свободного хлора, монохлорамина и дихлорамина в присутствии диэтилпарафенилендиамина, как индикатора. Свободный хлор образует окраску индикатора в отсутствии йодистого калия, монохлорамин дает окраску в присутствии очень маленьких количеств йодистого калия (2-3 мг), а дихлорамин образует окраску лишь в присутствии больших количеств KI (около 1 г) и при стоянии раствора в течение 2 мин. По количеству раствора соли Мора, израсходованному на титрование, определяют содержание того вида активного хлора, за счет которого образуется окрашенная форма индикатора.

4.2. Аппаратура, материалы, реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770 и ГОСТ 29251 , вместимостью: колбы мерные 100 и 1000 cм; цилиндры мерные 5 и 100 cм; микробюретки 1 и 2 cм.

Колбы конические вместимостью 250 cм; склянки из темного стекла вместимостью 100-200 cм.

Двойная сернокислая соль закиси железа и аммония (соль Мора) по ГОСТ 4208 .

Калий йодистый по ГОСТ 4232 .

Калий фосфорнокислый однозамещенный по ГОСТ 4198 , х.ч.

Кислота серная по ГОСТ 4204 .

Натрий фосфорнокислый двузамещенный безводный по ГОСТ 11773 .

Трилон Б (комплексон III, двунатриевая соль этилендиаминтетрауксусной кислоты) по ГОСТ 10652 .

Вода дистиллированная по ГОСТ 6709 .

Диэтилпарафенилендиамин оксалат или сульфат.

Все реактивы, применяемые для анализа, должны быть квалификации "чистые для анализа" (ч.д.а.).

4.3. Подготовка к анализу

4.3.1. Приготовление стандартного раствора соли Мора

1,106 г соли Мора Fe(NH)(SO)·6HO растворяют в дистиллированной воде, подкисляют 1 cм 25%-нoгo раствора серной кислоты HSO и доводят свежепрокипяченной и охлажденной дистиллированной водой до 1 дм. 1 cм раствора соответствует 0,1 мг активного хлора. Если определение проводится в 100 cм воды, то количество кубических сантиметров соли Мора, израсходованное на титрование, соответствует мг/дм хлора или монохлорамина, или дихлорамина. Раствор устойчив в течение месяца. Хранить его следует в темном месте.

4.3.2. Приготовление фосфатного буферного раствора

К 2,4 г фосфорнокислого натрия двузамещенного NaHPO и 4,6 г фосфорнокислого калия однозамещенного KHPO приливают 10 cм 0,8%-ного раствора трилона Б и доводят дистиллированной водой до 100 cм.

4.3.3. Приготовление индикатора диэтилпарафенилендиамина (оксалата или сульфата) 0,1%-ного раствора

0,1 г диэтилпарафенилендиамина оксалата (или 0,15 г сульфата) растворяют в 100 cм дистиллированной воды с добавлением 2 cм 10%-ного раствора серной кислоты. Раствор индикатора следует хранить в склянке из темного стекла.

4.4. Проведение анализа

4.4.1. Определение содержания свободного хлора

В коническую колбу для титрования помещают 5 cм фосфатного буферного раствора, 5 cм раствора диэтилпарафенилендиамина оксалата или сульфата и приливают 100 cм анализируемой воды, раствор перемешивают. В присутствии свободного хлора раствор окрашивается в розовый цвет, его быстро титруют из микробюретки стандартным раствором соли Мора до исчезновения окраски, энергично перемешивая. Расход соли Мора на титрование (, cм) соответствует содержанию свободного хлора, мг/дм.

При наличии в анализируемой воде значительных количеств свободного хлора (более 4 мг/дм) для анализа следует брать менее 100 cм воды, так как большие количества активного хлора могут полностью разрушить индикатор.

4.4.2. Определение содержания монохлорамина

В колбу с оттитрованным раствором добавляют кристаллик (2-3 мг) йодистого калия, раствор перемешивают. В присутствии монохлорамина мгновенно появляется розовая окраска, которую тотчас же оттитровывают стандартным раствором соли Мора. Количество кубических сантиметров соли Мора, пошедшее на титрование (, cм), соответствует содержанию монохлорамина, мг/дм.

4.4.3. Определение содержания дихлорамина

К оттитрованному раствору после определения содержания монохлорамина вновь добавляют около 1 г йодистого калия, перемешивают до растворения соли и оставляют раствор стоять в течение 2 мин. Появление розовой окраски свидетельствует о наличии в воде дихлорамина. Раствор титруют стандартным раствором соли Мора до исчезновения окраски. Расход соли Мора (, cм) соответствует содержанию дихлорамина, мг/дм.

4.5. Обработка результатов

Содержание суммарного остаточного активного хлора (), мг/дм, вычисляют по формуле

где - содержание свободного хлора, мг/дм;

- содержание монохлорамина, мг/дм;

- содержание дихлорамина, мг/дм.



Электронный текст документа
подготовлен ЗАО "Кодекс" и сверен по:
официальное издание
Контроль качества воды: Сборник ГОСТов. -
М.: Стандартинформ, 2009

Присутствует в качестве обеззараживающего средства, особенно это касается тех, кто пользуется водопроводной водой. Если смотреть на хлор с точки зрения вреда здоровью, то конечно это не лучшая примесь для организма. Чтобы понимать, насколько опасен или безопасен хлор, следует рассмотреть его действие. Хлор в газовом состоянии способен растворяться в воде, а значит, незаметно растворится в дыхательной системе и на слизистых носа и глаз. Когда происходит растворение хлора, образуется соляная кислота, которая как раз и разъедает нежные оболочки. Таким образом, хлор опасен для легких, сердца и он способен затормаживать работу тканей организма, вызывает одышку вплоть до того, что человек может задыхаться.

Ощущение хлора организм воспринимает как настоящую боль. Еще одним продуктом, воздействующим на слизистые, является атомарный кислород. Это действующее вещество в хлорированной воде, он активный и негативно воздействует не только на слизистые, но и на белковую, жировую и углеводную систему. При попадании воды на кожный покров она сильно сушится, и жировой слой достаточно сильно повреждается. Чрезмерной опасности это состояние не представляет, но конечно приводит к неприятным ощущениям.

Слизистые глаза страдают настолько, что чувствуется постоянное неприятное ощущение в глазах, часто это вызвано не каким-то заболеванием, а попаданием паров хлора. Влияние атомарного кислорода на глаза нельзя спрогнозировать, состояние может ухудшиться в любую минуту. Когда вы набираете ванну с сильной хлорированной водой, то происходит , а содержание хлора увеличивается и становится интенсивным концентратом, все это вдыхается и оседает внутри организма. Легкие подвержены раковым заболеваниям, происходит сбой работы внутренних органов. Хлорированная вода при питье оказывает не менее пагубное действие.

В какой форме может быть представлен хлор?

Активный хлор — это когда в воде происходит насыщение хлором, смешиваются молекулы хлора с соляной и хлорной кислотой и другими продуктами растворения. При хлорировании активный хлор полностью удаляется, а если и остается что – то, то это остаточное явление. Если представить что хлор не удаляется, то по пути к выходу из трубы возникает отряд болезнетворных бактерий, а труба может зарастать водорослями.

Остаточными компонентами в воде являются:

— остаточный хлор (свободный хлор, хлорноватистая кислота, продукты растворения и молекулы);

— связанный хлор (образуется при взаимодействии хлора и органических веществ);

— общий хлор (показатель совокупности всего хлора в воде);

— активный хлор (общий хлор за исключением компонентов связанного хлора).

Активный хлор

Активный хлор способен выделяться, когда происходит взаимодействие вещества и соляной кислоты. При окислительно-восстановительной реакции выделяется хлор, его степени окисления положительные и отмечены как +1, 3 или 5. Активный хлор вещества равен массе хлора в молекулярном виде. Очень трудно без существенных потерь произвести окисление HCl до Cl2. На самом деле активный хлор принимается как масса основного хлора, которая выделится из HI.

Йодоводородная кислота легко окислится до мельчайших частиц, в итоге получается йод, количество которого очень просто определить. Если смотреть на практические работы, то вещество растворяется и добавляется раствор KI, после образовавшийся йод титруют тиосульфатом определенной концентрации.

Использование хлорной воды и хлорноватистой кислоты

История использования таких веществ, которые содержат , уходит корнями на несколько сот лет назад. Хлор был открыт известным химиком в 1774 году, под воздействием хлора в воде происходит отбеливание желтых пятен на белы тканях хлопка и льна. Клод Луи Бертолле впервые отбелил бумагу и ткани, он открыл свою фабрику, на которую принял одного работника и своего сына для отбеливания холста.

При реакции в воде с хлором образуется хлорноватистая кислота по формуле HClO. Такой активный хлор получился впервые. Кислота в растворе не устойчивая, ее содержание не превышает и 30% в концентрированном виде. Если среда кислая, а температура поддерживается комнатная, то будет происходить замедленная реакция. Если в растворе есть соляная кислота, то образуется состояние равновесия, которое сдвигается вправо. Диспропорционирование и образование ионов хлората получается в слабых средах щелочи, реакция усиливается при высоких температурах. В реальности в воде находится очень мало хлорноватистой кислоты и активного хлора.

Уже в 19 веке исследования показали, что свойства хлорной воды – это в первую очередь отбеливание и дезинфекция, причем такого отбеливания не добиться ни с одним другим веществом. В таком действии хлор начали использовать в Венском госпитале в 1846 году, когда ввели практику для врачей ополаскивать руки после работы с пациентами. После того, когда на конгрессе в Вене признали, что с водой распространяются многие эпидемиологические заболевания типа холеры, стали искать качественное водных ресурсов. С появлением водопроводных сетей хлору сразу нашли применение, он стал использоваться как дезинфицирующее средство. Хлор растворяется в водной среде и убивает живые микроорганизмы. Активно используются соединения с активным хлором и для дезинфекции бассейнов, особенно в местах большого скопления народу, например в аквапарках. В природных водных источниках содержание хлора запрещено.

Количество остаточного активного хлора в воде – методы определения

Сначала отбираются пробы в соответствии с утвержденным ГОСТом. Объемы не должны быть меньше чем 500 см. куб. Пробы для работы проводятся сразу же после забора воды, промедление и консервация запрещены.

Хлорноватистая кислота в свободном виде во много раз активнее, так как HClO способен мембранно проникать вовнутрь бактерии. В данном случае подтверждено, что хлорирование воды это безопасный способ и дешевый. Болезнетворные бактерии в водной среде не всегда, получается, обнаруживать без длительного и сложного лабораторного исследования, однако кишечную палочку легко распознать и под микроскопом. Если большее количество палочек после хлорирования исчезает, то можно смело говорить об успешности проведенного мероприятия. На кубический метр воды по нормативам добавляется не более 2 грамм хлора. В весенний период добавляется чуть больше хлора, так как увеличивается число загрязнителей. Хлорированную воду пить не очень приятно, однако водопроводная вода не представляет опасности для человека. Чтобы хлорный запах улетучился, отставьте воду в открытой емкости на несколько часов или прокипятите.

Хлорная известь

Самой распространенной стала хлорная известь или белильная как ее еще называют. Получается она при хлорировании Ca(OH)2 в сухом виде. Продукт, который получается на исходе, содержит примерно до 30-37 % активного хлора. Разложение происходит очень медленно, поэтому запах хлора присутствует постоянно. Если известь хранить, следует знать, что за год она теряет активный хлор и с каждым годом теряет свои свойства все больше и больше. Ускорить разложение поможет влажность и высокая температура. Известь на открытом солнце теряет до 5% активного хлора за каждые сутки. Хлорная известь в лабораториях применяется для получения хлора, а также она используется для отбеливания и очистки нефтяных продуктов.

Шкала для определения активного хлора

Допустим, при определении активного хлора в белилах происходят одни и те же ошибки. Погрешности не всегда высчитываются и во многих случаях неизвестны. Велика вероятность улетучивания йода, калия йодид тоже здесь содержится, но при окислении хлор тоже может улетучиваться. Именно поэтому аналитическая схема при таких погрешностях не определяется.

В России хлорная известь производится на заводе Ушакова недалеко от города Елабуга. Активный хлор не устойчив при хранении, но это не мешает производить его в огромных количествах, в частности для развивающихся стран. В США наблюдалось самое большое производство хлора, но с появлением более эффективных средств, которые содержат активный хлор, производство снизилось.

Остаточный активный хлор в питьевой воде

О качественном обеззараживании свидетельствует свидетельство по ГОСТу, где уточняются показатели наличия бактерий. Остаточный активный хлор не обязательно проверяется исследованиями, по экспериментальным данным и по ведению наблюдений можно судит по соотношению хлора к хлорпоглощаемости. Показатель говорит о наличии эпидемической безопасности водообеспечения. Химическое окисление самый распространенный способ обеззараживания. В Англии в 1896 году оно спасло многих людей от болезнетворного брюшного тифа. В воде происходит процесс гидролиза, соответствующий формуле Cl2 + H2O = HCl + HClO. Хлорноватистая кислота HClO = HCl + O это работа кислорода в щелочной или кислой среде, вследствие чего образуются окислительные свойства. На станции происходит два этапа хлорирования, сначала вода обрабатывается после попадания из реки, а только потом проходит завершающую стадию очистки.

К соединениям с активным хлором относится и хлорит, который тоже обладает отбеливающим действием, в кислой среде происходит ее распад. Диоксид хлора используют для отбеливающих процессов с растительным и животным жиром и при дезодорации воды. В ClO2 в чистом виде активного хлора содержится более 26,28%.

Анализ отбора проб: проводится отбор проб и готовится для работы раствор метилового оранжевого в соотношении 0.005%. В колбу добавляется 50 мг реагента, который растворяется до получения одного литра. В миллилитре содержится до 0.0217 мг активного хлора. Этим раствором наполняется микробюретка. В чашку из фарфора наливают воду для анализа, достаточно 100 мл, туда вливают 3 капельки 5 М HCl и все смешивают, титруют меловым оранжевым до тех пор, пока не исчезнет розовый цвет. Расчеты проводят по формуле X2 = (X — X1). Для определения активного хлора существуют специальные тест-системы. Тест помогает определить активный хлор быстрее.

Исследователи и ученые определяют хлорирование как лучшее изобретение, которое только можно было придумать для гигиенических мероприятий 20 века. Активный хлор играет огромную роль и приносит пользу для всего живого. В нашей стране производство было налажено в Нижнем Новгороде, Ростове-на-Дону и конечно в Ленинградской области. С одной стороны по типу своему хлор относится к ядам, который во времена мировых войн использовался как химическое оружие, теперь к этому вопросу подходят ответственно, что очень заметно отсутствием хлорки в свободной продаже по розничным ценам.



Поделиться