Магнитное поле понятие. Магнитное поле

Магнитное поле - одна из форм материи (отличная от вещества), существующая в пространс­тве, окружающем постоянные магниты, проводники с током и движущиеся заряды. Магнитное поле вместе с электрическим полем образует единое электромагнитное поле.

Магнитное поле не только создается постоянными магнитами, движущимися зарядами и тока­ми в проводниках, но и действует на них же.

Термин «магнитное поле» был введен в 1845 г. М. Фарадеем. К тому времени был уже извес­тен ряд явлений электродинамики, требующих объяснения. К ним относятся, в частности, сле­дующие.

1. Явление взаимодействия постоянных магнитов (установление магнитной стрелки вдоль магнитного меридиана Земли, притяжение разноименных полюсов, отталкивание одноименных), известное с древних времен и систематически исследованное У. Гильбертом (результаты опубли­кованы в 1600 г. в его трактате «О магните, магнитных телах и о большом магните - Земле»).

2. В 1820 г. датский ученый Г. X. Эрстед обнаружил, что магнитная стрелка, помещенная вблизи проводника, по которому течет ток, поворачивается, стремясь расположиться перпендику­лярно проводнику.


3. В том же году французский физик Ампер, которого заинтере­совали опыты Эрстеда, обнаружил взаимодействие двух прямолиней­ных проводников с током. Оказалось, что если токи в проводниках текут в одну сторону, т. е. параллельны, то проводники притягивают­ся (рис. 3.31, а), если в противоположные стороны (т. е. антипарал-лельны), то отталкиваются.

Взаимодействия между проводниками с током, т. е. взаимодейс­твия между движущимися электрическими зарядами, называют маг­нитными, а силы, с которыми проводники с током действуют друг на друга, - магнитными силами.

Согласно теории близкодействия, которой придерживался М. Фа-радей, ток в одном из проводников не может непосредственно влиять на ток в другом проводнике. Аналогично случаю с неподвижными электрическими зарядами, вокруг которых существует электричес­кое поле, был сделан вывод, что в пространстве, окружающем токи, существует магнитное поле, которое действует с некоторой силой на другой проводник с током, помещенный в это поле, либо на посто­янный магнит. В свою очередь, магнитное поле, создаваемое вторым проводником с током, действует на ток в первом проводнике.
Подобно тому как электрическое поле обнаруживается по его воздействию на пробный заряд, внесенный в это поле, магнитное поле можно обнаружить по ориентирующему действию магнит­ного поля на рамку с током малых (по сравнению с расстояниями, на которых магнитное поле заметно меняется) размеров. Провода, подводящие ток к рамке, следует сплести (или расположить близко друг к другу), тогда результирующая сила, действующая со стороны маг­нитного поля на эти провода, будет равна нулю. Силы же, действующие на такую рамку с током, будут ее поворачивать, так что ее плоскость установится перпендикулярно линиям индукции магнитного поля. В примере, приведенном на рис. 3.32, рамка повернется так, чтобы проводник с током оказался в плоскости рамки. При изменении направления тока в проводнике рамка по­вернется на 180°. В поле между полюсами постоянного магнита рамка повернется плоскостью перпендикулярно магнитным силовым линиям магнита

Магнитное поле

силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом (См. Магнитный момент), независимо от состояния их движения. М. п. характеризуется вектором магнитной индукции В, который определяет: силу, действующую в данной точке поля на движущийся электрический заряд (см. Лоренца сила); действие М. п. на тела, имеющие магнитный момент, а также другие свойства М. п.

Впервые термин «М. п.» ввёл в 1845 М. Фарадей , считавший, что как электрические так и магнитные взаимодействия осуществляются посредством единого материального поля. Классическая теория электромагнитного поля (См. Электромагнитное поле) была создана Дж. Максвелл ом (1873), квантовая теория - в 20-х годах 20 века (см. Квантовая теория поля).

Источниками макроскопического М. п. являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: М. п. возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента (см. Магнетизм).

Переменное М. п. возникает также при изменении во времени электрического поля (См. Электрическое поле). В свою очередь, при изменении во времени М. п. возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения . Для характеристики М. п. часто вводят силовые линии поля (линии магнитной индукции). Касательная в каждой точке такой линии имеет направление вектора В в этой точке. Числом силовых линий, проходящих через единичную перпендикулярную к ним площадку, количественно определяют индукцию поля. В местах повышенных значений В линии индукции сгущаются, в тех же местах, где поле слабее, линии расходятся (см., например, рис. 1 ).

Для М. п. наиболее характерны следующие проявления.

1. В постоянном однородном М. п. на магнитный диполь с магнитным моментом p m действует вращающий момент N = [р m В ] (так, магнитная стрелка в М. п. поворачивается по полю; виток с током I , также обладающий магнитным моментом, стремится занять положение, при котором его плоскость была бы перпендикулярна линиям индукции; атомный диполь прецессирует вокруг силовой линии с характеристической частотой; рис. 1 , а).

2. В постоянном однородном М. п. действие силы Лоренца приводит к тому, что траектория движения электрического заряда имеет вид спирали с кривизной, обратно пропорциональной скорости (рис. 1 , б). Искривление траектории электрических зарядов под действием силы Лоренца сказывается, например, в перераспределении тока по сечению проводника при внесении его в М. п. Этот эффект лежит в основе гальваномагнитных, термомагнитных и других родственных им явлений.

3. В пространственно неоднородном М. п. на магнитный диполь действует сила F , перемещающая диполь в направлении градиента поля: F = grad (p m B ); так, пучок атомов, содержащий атомы с противоположно ориентированными магнитными моментами, в неоднородном М. п. разделяется на два расходящихся пучка (рис. 1 , в).

4. М. п., непостоянное во времени, оказывает силовое действие на покоящиеся электрические заряды и приводит их в движение; возникающий при этом в контуре ток I инд (рис. 1 , г) своим М. п. В инд противодействует изменению первоначального М. п. (см. Индукция электромагнитная).

Магнитная индукция В определяет среднее макроскопическое М. п., создаваемое в данной точке поля как токами проводимости (движением свободных носителей зарядов), так и имеющимися намагниченными телами (ионами и атомами вещества). М. п., созданное токами проводимости и не зависящее от магнитных свойств вещества, характеризуется вектором напряжённости магнитного поля (См. Напряжённость магнитного поля) Н = В - 4 πJ или Н = (В / μ 0) - J (соответственно в СГС системе единиц (См. СГС система единиц) и Международной системе единиц (См. Международная система единиц)). В этих соотношениях вектор J - Намагниченность вещества (магнитный момент единицы его объёма), μ 0 - Магнитная постоянная .

Отношение m = В / m 0 Н , определяющее магнитные свойства вещества, называется его магнитной проницаемостью (См. Магнитная проницаемость). В зависимости от величины m вещества делят на Диамагнетик и (m Парамагнетики (m > 1), вещества с m >> 1 называются ферромагнетиками (См. Ферромагнетики).

Объёмная плотность энергии М. п. в отсутствии ферромагнетиков: w M = mH 2 / 8p или w M = BH / 8p (в единицах СГС); w M = mm 0 H 2 / 2 или BH / 2 (в единицах СИ). В общем случае w M = 1 / 2 òHdB, где пределы интегрирования определяются начальными и конечными значениями магнитной индукции В , сложным образом зависящей от поля Н .

Для измерения характеристик М. п. и магнитных свойств веществ применяют различного типа Магнитометр ы. Единицей индукции М. п. в системе единиц СГС является гаусс (гс ), в Международной системе единиц - тесла (тл ), 1 тл = 10 4 гс. Напряжённость измеряется, соответственно, в эрстедах (э ) и амперах на метр (а /м , 1 а/м = 4p/10 3 э » 0,01256 э ; энергия М. п. - в эрг/см 2 или дж/м 2 , 1 дж/м 2 = 10 эрг/см 2 .

Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. М. п. Земли, образующее земную магнитосферу, простирается до расстояния в 70-80 тысяч км в направлении на Солнце и на многие миллионы км в противоположном направлении (см. Земля). У поверхности Земли М. п. равно в среднем 0,5 гс, на границе магнитосферы Магнитное поле 10 -3 гс. Геомагнитное поле экранирует поверхность Земли и биосферу (См. Биосфера) от потока заряженных частиц солнечного ветра (См. Солнечный ветер) и частично космических лучей. (См. Космические лучи) Влияние самого геомагнитного поля на жизнедеятельность организмов изучает Магнитобиология . В околоземном пространстве М. п. образует магнитную ловушку для заряженных частиц высоких энергий - радиационный пояс Земли (См. Радиационные пояса Земли). Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение М. п. Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре (см. Земной магнетизм).

Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела - Луна, планеты Венера и Марс не имеют собственного М. п., подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными М. п., достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены М. п. до 10 гс и ряд характерных явлений (Магнитные бури , синхротронное радиоизлучение и другие), указывающих на значительную роль М. п. в планетарных процессах.

Межпланетное М. п. - это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле Магнитное поле 10 -4 -10 -5 гс. Силовые линии регулярного межпланетного М. п. имеют вид идущих от Солнца раскручивающихся спиралей (их форма обусловлена сложением радиального движения плазмы и вращения Солнца). М. п. межпланетной плазмы имеет секторную структуру: в одних секторах оно направлено от Солнца, в других - к Солнцу. Регулярность межпланетного М. п. может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками (см. Космическая магнитогидродинамика).

Во всех процессах на Солнце - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей М. п. играет важнейшую роль (см. Солнечный магнетизм). Измерения, основанные на эффекте Зеемана, показали, что М. п. солнечных пятен достигает нескольких тысяч гс, протуберанцы удерживаются полями Магнитное поле 10-100 гс (при среднем значении общего М. п. Солнца Магнитное поле 1 гс ). Удалённость звёзд не позволяет пока наблюдать у них М. п. типа солнечных. В то же время более чем у двухсот так называемых магнитных звёзд (См. Магнитные звёзды) обнаружены аномально большие поля (до 3,4·10 4 гс ). Поля Магнитное поле 10 7 гс измерены у нескольких звёзд - белых карликов. (См. Белые карлики) Особенно большие (Магнитное поле 10 10 -10 12 гс ) М. п. должны быть, по современным представлениям, у нейтронных звёзд (См. Нейтронные звёзды). С М. п. космических объектов тесно связано ускорение заряженных частиц (электронов протонов, ядер) до релятивистских скоростей (близких к скорости света). При движении таких частиц в космических М. п. возникает электромагнитное Синхротронное излучение . Индукция межзвёздного М. п., определённая по Зеемана эффект у (в радиолинии 21 см спектра водорода) и по Фарадея эффект у (вращению плоскости поляризации электромагнитного излучения в М. п.), составляет всего Магнитное поле 5·10 -6 гс. Однако общая энергия межзвёздного (галактического) М. п. превышает энергию хаотического движения частиц межзвёздного газа и сравнима с энергией космических лучей.

В явлениях микромира роль М. п. столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц - структурных элементов вещества (электронов, протонов, нейтронов) магнитного момента, а также действием М. п. на движущиеся электрические заряды. Если суммарный магнитный момент М частиц, образующих атом или молекулу, равен нулю, то такие атомы и молекулы называются диамагнитными. Атомы (ионы, молекулы) с М ¹ 0 называются парамагнитными. У всех атомов (как с М = 0, так и с М ¹ 0) при наложении внешнего М. п. возникает индуцированный магнитный момент, направленный навстречу намагничивающему полю (см. Диамагнетизм). Однако у парамагнитных атомов в М. п. этот эффект маскируется преимущественным поворотом их магнитных моментов по полю (см. Парамагнетизм). У парамагнетиков и ферромагнетиков намагниченность увеличивается с ростом внешнего М. п. (до состояния насыщения). Вид кривых намагничивания (См. Намагничивание) ферромагнетиков (и антиферромагнетиков) в значительной степени определяется магнитным взаимодействием атомных носителей магнетизма. Это взаимодействие обусловливает также большое разнообразие типов атомной магнитной структуры (См. Магнитная структура) у ферримагнетиков (ферритов (См. Ферриты)).

Внутрикристаллическое М. п., измеренное в ферримагнетиках (ферритах-гранатах) на ядрах ионов железа, оказалось Магнитное поле 5·10 5 гс, на ядрах редкоземельного металла диспрозия Магнитное поле 8·10 6 гс. На расстоянии порядка размера атома (Магнитное поле 10 -8 см ) М. п. ядра составляет Магнитное поле 50 гс. Внешнее М. п. и внутриатомные М. п., создаваемые электронами атома и его ядром, расщепляют энергетические уровни атома (Зеемана эффект); в результате спектры атомов приобретают сложное строение (см. Тонкая структура и Сверхтонкая структура). Расстояния между зеемановскими подуровнями энергии (и соответствующими спектральными линиями) пропорциональны величине М. п., что позволяет спектральными методами определять значение М. п. С возникновением зеемановских подуровней энергии в М. п. и с квантовыми переходами между ними связано ещё одно важное физическое явление - резонансное поглощение веществом радиоволн (явление магнитного резонанса (См. Магнитный резонанс)). Зависимость положения и формы линий спектра магнитного резонанса от особенностей взаимодействия молекул, атомов, ионов, а также ядер в жидкостях и твёрдых телах даёт возможность исследовать при помощи электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс) (ЭПР) и ядерного магнитного резонанса (См. Ядерный магнитный резонанс) (ЯМР) структуру жидкостей, кристаллов и сложных молекул, кинетику химических и биохимических реакций.

М. п. способно заметно влиять на оптические свойства среды и процессы взаимодействия электромагнитного излучения с веществом (см. Фарадея эффект , Магнитооптика), вызывать Гальваномагнитные явления и Термомагнитные явления в проводниках и полупроводниках. М. п. оказывает влияние на Сверхпроводимость веществ: при достижении определённой величины М. п. разрушает сверхпроводимость (см. Критическое магнитное поле). М. п. при намагничивании ферромагнитных тел изменяет их форму и упругие свойства (см. Магнитострикция). Особые свойства в М. п. приобретает Плазма . М. п. препятствует движению заряженных частиц плазмы поперёк силовых линий поля (см. Магнитная гидродинамика). Этот эффект используется, например, для термоизоляции плазмы и обеспечения её устойчивости в установках для изучения свойств высокотемпературной плазмы.

Применение магнитных полей в науке и технике. М. п. обычно подразделяют на слабые (до 500 гс ), средние (500 гс - 40 кгс ), сильные (40 кгс - 1 Мгс ) и сверхсильные (свыше 1 Мгс ). На использовании слабых и средних М. п. основана практически вся электротехника, радиотехника и электроника. В научных исследованиях средние М. п. нашли применение в ускорителях заряженных частиц (См. Ускорители заряженных частиц), в Вильсона камере (См. Вильсона камера), искровой камере (См. Искровая камера), пузырьковой камере (См. Пузырьковая камера) и других трековых детекторах ионизующих частиц, в масс-спектрометра (См. Масс-спектрометры)х, при изучении действия М. п. на живые организмы и т.д. Слабые и средние М. п. получают при помощи магнитов постоянных (См. Магнит постоянный), электромагнитов, неохлаждаемых соленоидов, магнитов сверхпроводящих (См. Магнит сверхпроводящий).

М. п. до Магнитное поле500 кгс широко применяются в научных и прикладных целях: в физике твёрдого тела для изучения энергетических спектров электронов в металлах, полупроводниках и сверхпроводниках; для исследования ферро- и антиферромагнетизма, для удержания плазмы в МГД-генераторах и двигателях, для получения сверхнизких температур (см. Магнитное охлаждение), в электронных микроскопах для фокусировки пучков электронов и т.д. Для получения сильных М. п. применяют сверхпроводящие соленоиды (до 150-200 кгс , рис. 2 ), соленоиды, охлаждаемые водой (до 250 кгс , рис. 3 ), импульсные соленоиды (до 1,6 Мгс , рис. 4 ). Силы, действующие на проводники с током в сильных М. п., могут быть очень велики (так, в полях Магнитное поле 250 кгс механические напряжения достигают 4·10 8 н/м 2 , то есть предела прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов и соленоидов, его используют для штамповки изделий из металла. Предельное значение поля, которое можно получить без разрушения соленоида, не превышает 0,9 Мгс.

Сверхсильные М. п. используют для получения данных о свойствах веществ в полях свыше 1 Мгс и при сопутствующих им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности, глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные М. п. получают методом направленного взрыва (рис. 5 ). Медную трубу, внутри которой предварительно создано сильное импульсное М. п., радиально сжимают давлением продуктов взрыва. С уменьшением радиуса R трубы величина М. п. в ней возрастает Магнитное поле 1/R 2 (если магнитный поток через трубу сохраняется). М. п., получаемое в установках подобного типа (так называемых взрывомагнитных генераторах), может достигать нескольких десятков Мгс. К недостаткам этого метода следует отнести кратковременность существования М. п. (несколько мксек ), небольшой объём сверхсильного М, п. и разрушение установки при взрыве.

Лит.: Ландау Л. Д. и Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество и магнетизм, перевод с английского, М., 1971 (Берклеевский курс физики, т. 2); Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б., Получение сильных магнитных полей с помощью соленоидов, перевод с английского, М., 1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, перевод с английского, М., 1972; Кольм Г., Фриман А., Сильные магнитные поля, «Успехи физических наук», 1966, т. 88, в. 4, с. 703; Сахаров А. Д., Взрывомагнитные генераторы, там же, с. 725; Биттер Ф., Сверхсильные магнитные поля, там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных полей в астрофизике, там же, 1972, т. 106, в. 3.

Л. Г. Асламазов, В. Р. Карасик, С. Б. Пикельнер.

Рис. 1. a - действие однородного постоянного магнитного поля на магнитную стрелку, виток с током I и атомный диполь (е - электрон атома); б - действие однородного постоянного магнитного поля на свободно движущиеся электрические заряды q (их траектория в общем случае имеет вид спирали); в - разделение пучка магнитных диполей в неоднородном магнитном поле; г - возникновение тока индукции в витке при усилении внешнего магнитного поля В (стрелками показано направление тока индукции и создаваемого магнитного поля В инд). Здесь p т - магнитный момент, q - электрический заряд, v - скорость заряда.

    Магнитное поле Солнца производит корональные выбросы массы. Фото NOAA Звёздное магнитное поле магнитное поле, создаваемое движением проводящей плазмы внутри звёзд главно … Википедия

    Силовое поле, действующее на движущиеся электрич. заряды и на тела, обладающие магнитным моментом (независимо от состояния их движения). М. п. характеризуется вектором магнитной индукции В. Значение В определяет силу, действующую в данной точке… … Физическая энциклопедия

    МАГНИТНОЕ ПОЛЕ, область около магнита или проводника, по которому протекает ток, в которой могут наблюдаться магнитные эффекты, такие как отклонение стрелки компаса. Магнитное поле можно представить в виде ряда линий действия сил (линий потока),… … Научно-технический энциклопедический словарь

    магнитное поле - Одна из двух сторон электромагнитного поля, характеризующаяся воздействием на движущуюся электрически заряженную частицу с силой, пропорциональной заряду этой частицы и ее скорости. [ГОСТ Р 52002 2003] магнитное поле Одна из форм проявления… … Справочник технического переводчика

    Одна из форм электромагнитного поля. Магнитное поле создается движущимися электрическими зарядами и спиновыми магнитными моментами атомных носителей магнетизма (электронов, протонов и др.). Полное описание электрических и магнитных полей и их… … Большой Энциклопедический словарь

    Пространство, в котором может быть обнаружено действие магнитной силы. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. МАГНИТНОЕ ПОЛЕ та часть пространства, где проявляется притягивающее или отталкивающее … Словарь иностранных слов русского языка

    МАГНИТНОЕ ПОЛЕ - одна из форм электромагнитного (см.). М. п. это силовое поле, действующее на движущиеся электрические заряды и тела, обладающие магнитным (см.), независимо от состояния их движения. М. п. существует в межпланетном пространстве, не окружены Земля … Большая политехническая энциклопедия

    МАГНИТНОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается движущимися электрическими зарядами и спиновыми магнитными моментами, а также переменным электрическим полем. Действует на движущиеся электрические заряды и тела, обладающие магнитным … Современная энциклопедия

    - (Magnetic field) пространство, в котором действуют магнитные силы данного магнита, в частности земного шара. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Окружающее магнит пространство, в к ром проявляется его действие. Технический железнодорожный словарь. М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович … Технический железнодорожный словарь

    Магнитное поле - одна из двух сторон электромагнитного поля, характеризующаяся воздействием на движущуюся электрически заряженную частицу с силой, пропорциональной заряду этой частицы и ее скорости...

Магнитное поле

Картина силовых линий магнитного поля , создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

См. также: Электромагнитное поле

См. также: Магнетизм

Магни́тное по́ле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом , независимо от состояния их движения ; магнитная составляющая электромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц , хотя в заметно меньшей степени) (постоянные магниты ).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения -векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле , проявлениями которого являются, в частности, свет и все другие электромагнитные волны .

Электрический ток (I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

    С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

    1 Источники магнитного поля

    2 Вычисление

    3 Проявление магнитного поля

    • 3.1 Взаимодействие двух магнитов

      3.2 Явление электромагнитной индукции

    4 Математическое представление

    • 4.1 Единицы измерения

    5 Энергия магнитного поля

    6 Магнитные свойства веществ

    7 Токи Фуко

    8 История развития представлений о магнитном поле

    9 См. также

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера ). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В Международной системе единиц (СИ) сила Лоренца выражается так:

в системе единиц СГС :

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции , порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).

Математическое представление

Магнитное поле в макроскопическом описании представлено двумя различными векторными полями , обозначаемым как H и B .

H называется напряжённостью магнитного поля ; B называется магнитной индукцией . Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H ).

Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля . Аналогично, в единый тензор объединяются величины H и электрическая индукция D . В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.

Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС - полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B , хотя бы потому, что именно через него прямо выражается сила Лоренца.

Единицы измерения

Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС - в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10 -4 Тл и 1 Тл = 1·10 4 Гс.

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС . Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715 А/м.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля ,

B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

Компоненты тензора магнитной проницаемости ,

Тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

-магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

Диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

Относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток ,

L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопические структуры и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

    Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.

    Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

    Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

    Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

    Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

    К перечисленным выше группам веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Основная статья: Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Один из первых рисунков магнитного поля (Рене Декарт , 1644)

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами » по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта « De Magnete » , заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон , (1781-1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей).

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика » для описания взаимосвязи между электричеством и магнетизмом.

В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея . Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля , который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем.

В 1850 году лорд Кельвин , тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B . Первое было применимо к модели Пуассона, а второе - к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом.

Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла , которые объяснили и объединили электричество и магнетизм в классической физике . Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной « On Physical Lines of Force » . Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года « Динамическая теория электромагнитного поля » и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности ). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Элементы магнитного поля Земли

Характеристикой магнитного поля Земли, как и всякого магнитного поля, служит его напряженность F или ее составляющие. Для разложения вектора F на составляющие обычно принимают прямоугольную систему координат, в которой ось х ориентируют по направлению географического меридиана, у - по направлению параллели, при этом положительным считается направление оси х к северу, а оси у - к востоку. Ось z в таком случае будет направлена сверху вниз к центру Земли.

Поместим начало координат в точку, где происходит наблюдение напряженности магнитного поля Земли. Проекция этого вектора на ось х носит название северной составляющей , проекция на ось у - восточной составляющей и проекция на ось z - вертикальной составляющей , и обозначаются они через Hx, Hy, Hz соответственно. Проекцию F на горизонтальную плоскость называют горизонтальной составляющей Н . Вертикальная плоскость, в которой лежит вектор F , называется плоскостью магнитного меридиана , а угол между географическим и магнитным меридианами - магнитным склонением , которое обозначается через D . Наконец, угол между горизонтальной плоскостью и направлением вектора F носит название магнитного наклонения I .

Нетрудно видеть, что при таком расположении осей координат, как показано на рисунке, положительным склонением будет восточное, т. е. когда вектор Н отклонен от севера к востоку, а отрицательным - западное.

Наклонение I положительно , когда вектор F направлен вниз от земной поверхности, что имеет место в северном полушарии, и отрицательно , когда F направлен вверх, т. е. в южном полушарии. F или Н - международные обозначения полного вектора магнитного поля Земли и величины древнего поля соответственно. Иногда напряженность магнитного поля Земли обозначают через Т , но так же обозначается и модуль полного вектора.

Склонение D , наклонение I , горизонтальная составляющая Н , вертикальная составляющая Hz , северная Hx и восточная Hy составляющие носят название элементов земного магнетизма , которые можно рассматривать как координаты конца вектора F в различных системах координат. Так, например, Hx, Hy, Hz - не что иное, как координаты конца вектора F в прямоугольной системе координат ; Hz, H и D - координаты в цилиндрической системе и F, D и I - координаты в сферической системе координат. В каждой из этих трех систем координаты независимы друг от друга.

Величины Hx, Hy, Hz и Н в ряде случаев называют силовыми компонентами земного магнитного поля, а D и I - угловыми .

Как показывают наблюдения, ни один из элементов земного магнетизма не остается постоянным во времени, а непрерывно меняет свою величину от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма . Если наблюдать за этими вариациями в течение короткого промежутка времени (порядка суток), то можно заметить, что они имеют периодический характер, однако периоды, амплитуды и фазы их чрезвычайно разнообразны. Если же наблюдения ведутся длительно (несколько лет) с ежегодным определением среднегодового значения элементов, то легко установить, что среднегодовые значения также меняются, но характер изменения уже монотонный, и периодичность их выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет).

Медленные вариации элементов земного магнетизма получили название вековых вариаций , их величина обычно составляет десятки гамм в год. Вековые вариации элементов связаны с источниками, лежащими внутри земного шара, и вызываются теми же причинами, что и магнитное поле Земли.

Изменение среднегодовых значений того или иного элемента в течение года называется вековым ходом .

Быстротечные вариации периодического характера, весьма различные по амплитуде, имеют своим источником электрические токи в высоких слоях атмосферы.

Данные о быстротечных вариациях магнитного поля Земли в виде часовых и минутных значений элементов земного магнетизма представлены на сайте Мирового центра данных по солнечно-земной физике.

Проекция Гаусса - Крюгера

Материал из Википедии - свободной энциклопедии

(перенаправлено с «Система координат Гаусса-Крюгера »)

Проекция Гаусса - Крюгера - поперечная цилиндрическая равноугольная картографическая проекция , разработанная немецкими учёными Карлом Гауссом и Луи Крюгером . Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат . Эта система является наиболее простой и удобной при проведении инженерных и топографо-геодезических работ .



Поделиться