Фермы из круглых труб. Оголовки колонн. Расчет и конструирование

Оголовки колонн. Расчет и конструирование

Сопряжение балок с колоннами может быть свободное (шарнирное) и жесткое . Свободное сопряжение передает только вертикальные нагрузки. Жесткое сопряжение образует рамную систему, способную воспринимать горизонтальные воздействия и уменьшать расчетный момент в балках. В этом случае балки примыкают к колонне сбоку.

При свободном сопряжении балки ставят на колонну сверху, что обеспечивает простоту монтажа.

В этом случае оголовок колонны состоит из плиты и ребер, поддер­живающих плиту и передающих нагрузку на стержень колонны (рис.).

Если нагрузка передается на колонну через фрезерованные торцы опорных ребер балок, расположенных близко к центру колонны, то пли­та оголовка поддерживается снизу ребрами, идущими под опорными ребрами балок (рис. а и б).

Рис. Оголовки колонн при опирании балок сверху

Ребра оголовка приваривают к опорной плите и к ветвям колонны при сквозном стержне или к стене колонны при сплошном стержне. Швы, прикрепляющие ребро оголовка к плите, должны выдерживать полное давление на оголовок. Проверяют их по формуле

. (8)

Высоту ребра оголовка определяют требуемой длиной швов, пере­дающих нагрузку на стержень колонны (длина швов не должна быть больше 85∙β w ∙k f:

. (9)

Толщину ребра оголовка определяют из условия сопротивления на смятие под полным опорным давлением

, (10)

где - длина сминаемой поверхности, равная ширине опорного ребра балки плюс две толщины плиты оголовка колонны.

Назначив толщину ребра, следует проверить его на срез по формуле:

. (11)

При малых толщинах стенок швеллеров сквозной колонны и стенки сплошной колонны их надо также проверить на срез в месте прикреп­ления к ним ребер. Можно в пределах высоты оголовка сделать стенку более толстой.

Чтобы придать жесткость ребрам, поддерживающим опорную плиту, и укрепить от потери устойчивости стенки стержня колонны в местах пе­редачи больших сосредоточенных нагрузок, вертикальные ребра, вос­принимающие нагрузку, обрамляют снизу горизонтальными ребрами.

Опорная плита оголовка передает давление от вышележащей кон­струкции на ребра оголовка и служит для скрепления балок с колон­нами монтажными болтами, фиксирующими проектное положение балок.

Толщина опорной плиты принимается конструктивно в пределах 20-25 мм.

При фрезерованном торце колонны давление от балок передается через опорную плиту непосредственно на ребра оголовка. В этом случае толщина швов, соединяющих плиту с ребрами, так же как и с ветвями колонны, назначается конструктивно.

Если балка крепится к колонне сбоку (рис.), вертикальная ре­акция передается через опорное ребро балки на столик, приваренный к полкам колонны. Торец опорного ребра балки и верхняя кромка столика пристраиваются. Толщину столика принимают на 20-40 мм больше толщины опорного ребра балки.

Рис. Опирание балки на колонну сбоку

Столик целесообразно приваривать к колонне по трем сторонам.

Чтобы балка не зависла на болтах и плотно стала на опорный сто­лик, опорные ребра балки прикрепляют к стержню колонны болтами, диаметр которых должен быть на 3 - 4 мм меньше диаметра отверстий.

Лекция 13

Фермы. Общая характеристика и классификация

Ферма - система стержней, соединенных между собой в узлах и образующих геомет­рически неизменяемую кон­струкцию. Фермы бывают плоскими (все стержни лежат в одной плоскости) и пространственными.

Плоские фермы (рис. а) могут воспринимать нагрузку, при­ложенную только в их плоскости, и нуждаются в закреплении из своей плоскости связями или другими элементами. Пространствен­ные фермы (рис. б, в) образуют жесткий пространственный брус, способный воспринимать нагрузку, действующую в любом на­правлении. Каждая грань такого бруса представляет собой плоскую ферму. Примером пространственного бруса может служить башен­ная конструкция (рис. г).


Рис. Плоская (а) и пространственные (б, в, г) фермы

Основными элементами ферм являются пояса, образующие кон­тур фермы, и решетка, состоящая из раскосов и стоек (рис.).


1 - верхний пояс; 2 - нижний пояс; 3 - раскосы; 4 - стойка

Рис. Элементы ферм

Расстояние между узлами пояса называют панелью (d ) , рас­стояние между опорами - пролетом (l ), расстояние между осями (или наружными гранями) поясов - высотой фермы (h ф ).

Пояса ферм работают в основном на продольные усилия и мо­мент (аналогично поясам сплошных балок); решетка ферм воспри­нимает в основном поперечную силу.

Соединения элементов в узлах осуществляют путем непосредст­венного примыкания одних элементов к другим (рис. а) или с помощью узловых фасонок (рис. б). Для того чтобы стерж­ни ферм работали в основном на осевые усилия, а влиянием моментов можно было пренебречь, элементы ферм центрируют по осям, проходящим через центры тяжести.

а – при непосредственном примыкании элементов решетки к поясу;

б – при соединении элементов с помощью фасонки

Рис. Узлы ферм

Фермы классифицируют по статической схеме, очертанию поясов, системе решетки, способу соединения элементов в узлах, величине усилия в элементах. По статической схеме фермы бывают (рис.): балочные (разрезные, не­разрезные, консольные), арочные, рамные и вантовые.

Балочные разрезные системы (рис.а) применяются в покрытиях зданий, мостах. Они просты в изготовлении и мон­таже, не требуют устройства сложных опорных узлов, но весьма металлоемки. При больших пролетах (более 40 м) разрезные фермы получаются негабаритными и их приходится собирать из отдельных элементов на монтаже. При числе перекрываемых пролетов два и более применяют неразрезные фермы (рис. б). Они экономичнее по расходу металла и обладают большей жесткостью, что позволяет уменьшить их высоту. Но при осадке опор, в неразрезных фермах возника­ют дополнительные усилия, поэтому их применение при слабых просадочных основаниях не рекомендуется. Кроме того, усложнен монтаж таких конструк­ций.


а - балочная разрезная; 6 - балочная неразрезная; в, е - консольная;

г - рамная; д - арочная; ж - вантовая; з - комбинированные:

Рис. Системы ферм

Консольные фермы (рис. в, е) используют для навесов, башен, опор воздушных линий электропередач. Рамные системы (рис. д) экономичны по расходу стали, имеют меньшие габариты, од­нако более сложны при монтаже.Их применение рационально для большепролетных зданий. Применение арочных систем (рис. д),хотя и дает экономию стали, приводит к увеличению объема поме­щения и поверхности ограждающих конструкций.Их применение вызвано в основном архитектурными требованиями. В вантовых фермах (рис. ж) все стержни работают только на растяжение и могут быть выполнены из гибких элементов, например стальных тросов. Растяжение всех элементов таких ферм достигается выбором очертания поясов и решетки, а также созданием предварительного напряжения. Работа только на растяжение позволяет полностью ис­пользовать высокие прочностные свойства стали, поскольку снима­ются вопросы устойчивости. Вантовые фермы рациональны для большепролетных перекрытий и в мостах. Применяются также комбинированные системы, состоящие из балки, подкрепленной снизу шпренгелем или раско­сами, либо сверху аркой (рис. з). Эти системы просты в изготовлении (вследствие меньшего числа элементов) и рациональны в тяжелых конструкциях, а также в конструкциях с подвижными нагрузками. Весьма эффективно применение комбинированных систем при уси­лении конструкций, например, подкрепление балки, при недоста­точной ее несущей способности, шпренгелем или подкосами.

В зависимости оточертания поясов фермы подразделяют на сегментные, полигональные, трапецеидальные, с параллельными поясами и треугольные (рис.).

Наиболее экономичной по расходу стали является ферма, очерченная по эпюре моментов. Для одно­пролетной балочной системы с равномерно распределенной нагруз­кой это сегментная ферма с параболическим поясом (рис. а). Однако криволинейное очертание пояса повышает трудоемкость изготовления, поэтому такие фермы в настоящее время практически не применяют.

Более приемлемым является полигональное очертание (рис. б) с переломом пояса в каждом узле. Оно достаточно близко соответст­вует параболическому очертанию эпюры моментов, не требует изго­товления криволинейных элементов. Такие фермы иногда применя­ют для перекрытия больших пролетов и в мостах.


а - сегментное; б - полигональное; в - трапецеидальное; г - с параллельными поясами; д, е, ж, и - треугольное

Рис. Очертания поясов ферм:

Фермы трапецеидального очертания (рис. в) имеют конструктивные пре­имущества прежде всего за счет упрощения узлов. Кроме того, при­менение таких ферм в покрытии позволяет устроить жесткий рам­ный узел, что повышает жесткость каркаса.

Фермы с параллельными поясами (рис. г) имеют равные длины элементов решетки, одинаковая схема узлов, наибольшая повторяемость элементов и деталей и возможность их унификации, что способствует индустриализации их изготовления.

Фермы треугольного очертания (рис. д, е, ж, и) рациональ­ны для консольных систем, а также для балочных систем при сосре­доточенной нагрузке в середине пролета (подстропильные фермы). При распределенной нагрузке треугольные фермы имеют повышен­ный расход металла. Кроме того, они имеют ряд конструктивных недостатков. Острый опорный узел сложен и допускает только шарнирное сопряжение с колоннами. Средние раскосы получаются чрезвычайно длинными, и их сечение приходится подбирать по пре­дельной гибкости, что вызывает перерасход металла.

По способу соединения элементов в узлах фермы подразделяют на сварные и болтовые. В конструкциях, изготовленных до 50-х го­дов, применялись также клепаные соединения. Основными типами ферм являются сварные. Болтовые соединения, как правило, на вы­сокопрочных болтах применяют в монтажных узлах.

По величине максимальных усилий условно различают легкие фермы с сечениями элементов из простых прокатных или гнутых профилей (при усилиях в стержнях N < 3000 кН) и тяжелые фермы с элементами составного сечения (N > 3000 кН).

Эффективность ферм может быть повышена при создании в них предварительного напряжения.

Системы решеток ферм

Системы решетки, применяемые в фермах, показаны на рис.


а - треугольная; б - треугольная со стойками; в, г - раскосная; д - шпренгельная; е - кресто­вая; ж - перекрестная; и - ромбическая; к - полураскосная

Рис. Системы решеток ферм

Выбор типа решетки зависит от схемы приложения нагрузок, очертания поясов и конструктивных требований. Для обеспечения компактности узлов угол между раскосами и поясом желательно иметь в пределах 30...50 0 .

Треугольная система решетки (рис. а) имеет наименьшую суммарную длину элементов и наименьшее число узлов. Различают фермы с восходящими и нисходящими опорными раскосами.

В местах приложения сосредоточенных нагрузок (например, в местах опирания прогонов кровли) можно установить дополнительные стойки или подвески (рис. б). Эти стойки служат также для уменьшения расчетной длины пояса. Стойки и подвески работают только на ме­стную нагрузку.

Недостатком треугольной решетки является наличие длинных сжатых раскосов, что требует дополнительного расхода стали для обеспечения их устойчивости.

В раскосной решетке (рис. в, г) все раскосы имеют усилия одного знака, а стойки - другого. Раскосная решетка более металлоемка и трудоемка по сравнению с треугольной, так как общая длина эле­ментов решетки больше и в ней больше узлов. Применение раскос­ной решетки целесообразно при малой высоте ферм и больших уз­ловых нагрузках.

Шпренгельную решетку (рис. д) применяют при внеузловом приложении сосредоточенных нагрузок к верхнему поясу, а также при необходимости уменьшения расчетной длины пояса. Она более трудоемка, но может обеспечить снижение рас­хода стали.

Крестовую решетку (рис. е) применяют при действии нагрузки на ферму как в одном, так и в другом направлении (например, ветровая нагрузка). В фермах с поясами из тавров можно применить перекрестную решетку (рис. ж) из одиночных уголков с креплением рас­косов непосредственно к стенке тавра.

Ромбическая и полураскосная решетки (рис. и, к) благодаря двум системам раскосов обладают большой жесткостью; эти системы применяют в мостах, башнях, мачтах, связях для уменьшения расчетной длины стержней.

Типы сечений стержней ферм

По расходу стали для сжатых стержней ферм наиболее эффек­тивным является тонкостенное трубчатое сечение (рис. а). Круг­лая труба обладает наиболее благоприятным для сжатых элементов распределением материала относительно центра тяжести и при рав­ной с другими профилями площади сечения имеет наибольший ра­диус инерции (i ≈ 0,355d), одинаковый во всех направлениях, что позволяет получить стержень наименьшей гибкости. Применение труб в фермах дает экономию стали до 20...25 % .


Рис. Типы сечений элементов легких форм

Большим преимуществом круглых труб является хорошая обте­каемость. Благодаря этому ветровое давление на них меньше, что особенно важно для высоких открытых сооружений (башен, мачт, кранов). На трубах мало задерживается иней и влага, поэтому они более стойки против коррозии, их легко очищать и окрашивать. Все это повышает долговечность трубчатых конструкций. Для предот­вращения коррозии внутренние полости трубы следует герметизиро­вать.

Прямоугольные гнуто-замкнутые сечения (рис. б), позволяют упростить узлы сопряже­ния элементов. Однако, фер­мы из гнутозамкнутых профилей с бесфасоночными узлами требуют высокой точности из­готовления и могут быть выполнены только на специализированных заводах.

До последнего времени легкие фермы проектировали в основном из двух уголков (рис. в, г, д, е). Такие сечения имеют большой диапазон площадей, удобны для конструирования узлов на фасонках и прикрепления примыкающих к фермам конструкций (прогонов, кровельных панелей, связей). Существенным недостатком такой конструктивной формы являются; большое количество элементов с различными типоразмерами, значительный расход металла на фа-сонки и прокладки, высокая трудоемкость изготовления и наличие щели между уголками, что способствует коррозии. Стержни с сечением из двух уголков, составленных тавром, не эф­фективны при работе на сжатие.

При относительно небольшом усилии стержни ферм можно вы­полнять из одиночных уголков (рис. ж). Такое сечение проще в изготовлении, особенно при бесфасоночных узлах, поскольку имеет меньше сборочных деталей, не имеет щелей, закрытых для очистки и окраски.

Использование для поясов ферм тавров (рис. и) позволяет значительно упростить узлы. В такой ферме уголки раскосов и стоек можно приварить непосредственно к стенке тавра без фасонок. Это в два раза уменьшает количество сборочных деталей и снижает тру­доемкость изготовления:

Если пояс ферм работает, помимо осевого усилия, и на изгиб (при внеузловой передаче нагрузки), рационально сечение из дву­тавра или двух швеллеров (рис. к, л).

Весьма часто сечения элементов фермы принимают из разных видов профилей: пояса из двутавров, решетка из гнутозамкнутых профилей, или пояса из тавров, решетка из парных или одиночных уголков. Такое комбинированное решение оказывается более рацио­нальным.

Сжатые элементы ферм следует проектировать равноустойчивыми в двух взаимно перпендикулярных направлениях. При одинако­вых расчетных длинах l x = l y этому условию отвечают сечения из круглых труб и квадратных гнутозамкнутых профилей/.

В фермах из парных уголков близкие радиусы инерции (i x ≈ i y) имеют неравнополочные уголки, поставленные большими полками вместе (рис. г). Если расчетная длина в плоскости фермы в два раза меньше, чем из плоскости (например, при наличии шпренгеля), рационально сечение из неравнополочных уголков, составленных вместе малыми полками (рис. д), так как в этом случае i y ≈ 2i x .

Стержни тяжелых ферм отличаются от легких более мощными и развитыми сечениями, составленными из нескольких элементов (рис.).


Рис. Типы сечений элементов тяжелых ферм

Определение расчетной длины стержней фермы

Несущая способность сжатых элементов зависит от их расчетной длины:

l ef = μ× l , (1)

где ц - коэффициент приведения длины, зависящий от способа за­крепления концов стержня;

l - геометрическая длина стержня (расстояние между центрами узлов или точками закрепления от смещения).

Заранее мы не знаем, в каком направлении произойдет выпучи­вание стержня при потере устойчивости: в плоскости фермы или в перпендикулярном направлении. Поэтому для сжатых элементов необходимо знать расчетные длины и проверить устойчивость в обо­их направлениях. Гибкие растянутые стержни могут провисать под действием собственного веса, их легко повредить при транспорти­ровке и монтаже, а при действии динамических нагрузок они могут вибрировать, поэтому их гибкость ограничена. Для проверки гибкости необходимо знать и расчетную длину растянутых стержней.

На примере стропильной фермы производственного здания с фонарем (рис.) рассмотрим приемы определения расчетных длин. Возможное искривление поясов фермы при потере устойчиво­сти в ее плоскости может произойти между узлами (рис. а).

Поэтому расчетная длина пояса в плоскости фермы равна расстоя­нию между центрами узлов (μ = 1). Форма потери устойчивости из плоскости фермы зависит от того, в каких точках пояс закреплен от смещения. Если по верхнему поясу уложены жесткие металлические или железобетонные панели, приваренные или закрепленные к поя­су на болтах, то ширина этих панелей (как правило, равная расстоя­нию между узлами) и определяет расчетную длину пояса. Если в ка­честве кровельного покрытия используется профилированный на­стил, прикрепленный непосредственно к поясу, то пояс закреплен от потери устойчивости по всей длине. При кровле по прогонам расчетная длина пояса из плоскости фермы равна расстоянию между прогонами, закрепленными от смещения в горизонтальной плоско­сти. Если прогоны не закре­пили связями, то они не могут пре­пятствовать смещению пояса фермы и расчетная длина пояса будет равна всему пролету фермы. Для того что­бы прогоны обеспечивали закрепле­ние пояса, необходимо поставить горизонтальные связи (рис. б)и связать с ними прогоны. На уча­стке покрытия под фонарем необходимо поставить распорки.

а - деформации верхнего пояса при потере устойчивости в плоскости фер­мы; б, в - то же, из плоскости фермы; г - деформации решетки

Рис. К определению расчет­ных длин элементов ферм

Таким образом, расчетная длина пояса из плоскости фермы в общем случае равна расстоянию между точками, закрепленными от смеще­ния. Элементами, закрепляющими пояс, могут служить кровельные па­нели, прогоны, связи и распорки. В процессе монтажа, когда элементы кровли еще не установлены для за­крепления фермы, из их плоскости могут использоваться временные связи или распорки.

При определении расчетной длины элементов решетки мо­жно учесть жесткость узлов. При потере устойчивости сжатый элемент стремится повер­нуть узел (рис.г). Примыкающие к этому узлу стержни сопротивляются изгибу. Наибольшее со­противление повороту узла оказывают растянутые стержни, по­скольку их деформация от изгиба ведет к сокращению расстояния между узлами, между тем как от основного усилия это расстояние должно увеличиваться. Сжатые же стержни слабо сопротивляются изгибу, так как деформации от поворота и осевого усилия направле­ны у них в одну сторону и, кроме того, они сами могут терять ус­тойчивость. Таким образом, чем больше растянутых стержней при­мыкает к узлу и чем они мощнее, т.е. чем больше их погонная жест­кость, тем больше степень защемления рассматриваемого стержня и меньше его расчетная длина. Влиянием сжатых стержней на защем­ление можно пренебречь.

Сжатый пояс слабо защемлен в узлах, поскольку погонная жест­кость растянутых элементов решетки, примыкающих к узлу, невели­ка. Поэтому при определении расчетной длины поясов мы не учитывали жесткость узлов. Аналогично и для опорных раскосов и стоек. Для них расчетные длины, как и для поясов, равны геометрической, т.е. расстоянию между центрами уз­лов.

Для прочих элементов решетки принимается следующая схема. В узлах верхнего пояса большинство элементов сжаты и мера защемления мала. Эти узлы можно считать шарнирными. В узлах нижнего пояса большинство сходящихся в узле элементов растяну­ты. Эти узлы являются упругозащемленными.

Степень защемления зависит не только от знака усилий стерж­ней, примыкающих к сжатому элементу, но и от конструкции узла. При наличии фасонки, ужесточающей узел, защемление больше, поэтому, согласно нормам, в фермах с узловыми фасонками (например, из парных уголков) расчетная длина в плоскости фермы равна 0,8×l , а в фермах с примыканием элементов впритык, без узло­вых фасонок - 0,9×l .

При потере устойчивости из плоскости фермы степень защемле­ния зависит от крутильной жесткости поясов. Фасонки из своей плоскости гибкие и могут рассматриваться как листовые шарниры. Поэтому в фермах с узлами на фасонках расчетная длина элементов решетки равна расстоянию между узлами l 1 . В фермах с поясами из замкнутых профилей (круглых или прямоугольных труб), имею­щих высокую крутильную жесткость, коэффициент приведения рас­четной длины может быть принят равным 0,9.

В таблице приведены расчетные длины элементов для наиболее распространенных случаев плоских ферм.

Таблица - Расчетные длины элементов ферм

Примечание. l -геометрическая длина элемента (расстояние между центрами узлов); l 1 - расстояние между центрами узлов, закрепленных от смещения из плоскости фермы (поясами ферм, связями, плитами покрытия и т.д.).

Подбор сечения сжатых и растянутых элементов

Подбор сечения сжатых элементов

Подбор сечений сжатых элементов ферм начинается с определения требуемой площади из условия устойчивости

, (2)

.

1) Предварительно можно принять для поясов легких ферм l = 60 - 90 и для решетки l = 100 - 120. Большие значения гиб­кости принимаются при меньших усилиях.

2) По требуемой площади подбирают из сортамента подходящий профиль, определяют его фактические геометрические характеристики A, i х, i y .

3) Находят l х = l x /i x и l y =l y /i y , по большей гибкости уточняют коэффици­ент j.

4) Делают проверку устойчивости по формуле (2).

Если гиб­кость стержня предварительно была задана неправильно и проверка показала перенапряжение или значительное (больше 5-10 %) недонапряжение, то проводят корректировку сечения, принимая проме­жуточное между предварительно заданной и фактической значение гибкости. Обычно второе приближение достигает цели.

Примечание. Местную устойчивость сжатых элементов, выполненных из про­катных сечений, можно считать обеспеченной, поскольку из усло­вий прокатки толщина полок и стенок профилей больше, чем требу­ется из условий устойчивости.

При выборе типа профилей нужно помнить, что рациональным является сечение, имеющее одинаковые гибкости как в плоскости, так и из плоскости фермы (принцип равноустойчивости), поэтому при назначении профилей необходимо обратить внимание на соотношение рас­четных длин. Например, если проектируем ферму из уголков и расчетные длины элемента в плоскости и из плоскости одинаковы, то рационально выбрать неравнополочные уголки и поставить их большими полками вместе, так как в этом случае i x ≈ i y , и при l x = l y λ x ≈ λ y . Если расчетная длина из плоскости l y в два раза больше расчетной длины в плоскости l x (например, верхний пояс на участке под фонарем), то более рациональным будет сечение из двух неравнополочных уголков, поставленных вместе малыми полками, так как в этом случае i x ≈ 0,5×i y и при l x =0,5×l y λ x ≈ λ y . Для элемен­тов решетки при l x =0,8×l y наиболее рациональным будет сечение из равнополочных уголков. Для поясов ферм лучше запроектировать сечение из неравнополочных уголков, поставленных вместе меньшими полками, чтобы при подъ­еме фермы обеспечить большую жесткость из плоскости.

Подбор сечения растянутых элементов

Требуемую площадь сечения растянутого стержня фермы определяем по формуле

. (3)

Затем по сортаменту выбирают профиль, имеющий ближайшее большее значение площади. Проверка принятого сечения в этом случае не требуется.

Подбор сечения стержней по предельной гибкости

Элементы ферм следует проектировать, как правило, из жестких стержней. Особенно существенное значение жесткость имеет для сжатых элементов, предельное состояние которых определяется по­терей устойчивости. Поэтому для сжатых элементов ферм в СНиПе установлены требования по предельной гибкости более жесткие, чем в зарубежных нормативных документах. Пре­дельная гибкость для сжатых элементов ферм и связей зависит от назначения стержня и степени его загруженности: , где N - расчетное усилие, j×R y ×g c - несущая способность.

Растянутые стержни также не должны быть слишком гибкими, особенно при воздействии динами­ческих нагрузок. При статических нагрузках гибкость растянутые элементов ограничивается только в вертикальной плоскости. Если растянутые элементы предварительно напряжены, то их гибкость не ограничивается.

Ряд стержней легких ферм имеют незначительные усилия и, сле­довательно, небольшие напряжения. Сечения этих стержней подби­рают по предельной гибкости. К таким стержням обычно от­носят дополнительные стойки в треугольной решетке, раскосы в средних панелях ферм, элементы связей и т.п.

Зная расчетную длину стержня l ef и значение предельной гиб­кости l пр, определяем требуемый радиус инерции i тр = l ef / l тр. По нему в сортаменте выбираем сечение, имеющее наименьшую площадь.

Особенности конструирования ферм из круглых труб. Конструирование фермы следует начинать с вычерчивания осевых линий элементов, сходящихся в узлах. Стержни центрируют по геометрическим осям труб. При наличии расцентровки стержней в узлах необходимо при расчете фермы учитывать дополнительные узловые моменты. При неполном использовании несущей способности поясной трубы допускается эксцентриситет не более 1/4 диаметра поясной трубы.

При бесфасоночных соединениях в узлах тонкостенность поясов из условия местной устойчивости рекомендуется принимать не более значений, приведенных в табл. 7, тонкостенность примыкающих элементов – по возможности максимальной, но также не более значений, приведенных в табл. 7.

Таблица 7

Тонкостенность элементов ферм из круглых труб

П р и м е ч а н и е: 1) указанные в табл. 7 значения δ для поясов являются ориентировочными и не исключают необходимости проверки прочности узлов; 2) для сжатых примыкающих элементов при указанных в табл. 7 значениях δ d не требуется проверка их стенок на местную устойчивость.

РАСЧЕТ И КОНСТРУИРОВАНИЕ УЗЛОВ ФЕРМЫ

Соединение трубчатых стержней в узлах фермы должно обеспечивать прочность узла и герметичность торцов труб, чтобы предотвратить возникновение коррозии с внутренней стороны полых элементов.

В трубчатых фермах наиболее рациональны бесфасоночные узлы с непосредственным примыканием стержней решетки к поясам. При выполнении фигурной резки концов специальными машинами такие узлы дают высококачественное соединение с минимальной затратой труда и материала. Если нет станков для фигурной обработки торцов труб, узлы трубчатых ферм выполняют со сплющиванием концов стержней решетки, а в исключительных случаях – на фасонках или с помощью цилиндрических и полукруглых вставок . Сплющивание концов допустимо лишь для труб из малоуглеродистой или другой пластичной стали.

Характерные решения конструкции узлов стропильных ферм из круглых труб приведены на рис. 5.

В типовой серии в фермах из круглых труб принимают бесфасоночные узлы сопряжения элементов решетки с поясами. Примыкание раскосов к поясам рекомендуется выполнять с разделкой кромок, а сварку в узловых соединениях труб производить с проплавлением стенки примыкающей трубы на всю ее толщину. Заводские сварные соединения элементов ферм рекомендуется выполнять полуавтоматической сваркой, на монтаже допускается применение ручной сварки. Материалы для сварки выбирают согласно .



Расчет узлового сопряжения с непосредственным примыканием стержней решетки к поясам (см. рис. 5, а) является теоретически сложной задачей, относящейся к области расчета пересекающихся цилиндрических оболочек. Напряжения по длине сварного шва, соединяющего трубу решетки с поясом, распределяются неравномерно и зависят от отношения диаметров соединяемых труб, толщины стенки и прочностных характеристик материала поясной трубы, угла сопряжения труб и т.п. Так как центр тяжести сварного шва обычно не совпадает с осью приложения усилия, то рекомендуется проверять раздельно несущую способность участков шва, лежащих по разные стороны от оси, принимая, что на каждый участок передается половина осевого усилия. Форма сварного шва без снятия фаски получается переменной по длине линии соединения труб: при остром угле примыкания шов приближается к угловому, при тупом – к стыковому.

В трубах без разделки кромок участок шва у тупого угла можно рассматривать как стыковой, остальные – как угловые. В этом случае прочность шва, прикрепляющего трубчатый стержень решетки, можно проверить в запас



несущей способности по формуле (расчет по металлу шва):

σ = £ 0,85R wf γ wf γ c ,

где 0,85 – коэффициент условия работы шва, учитывающий неравномерность распределения напряжений по длине шва; l w – длина шва,

l w = .

Значения коэффициента ξ зависят от соотношения диаметров труб:

d / D 0,2 0,5 0,6 0,7 0,75 0,8 0,85 0,9 0,95 1,0
ξ 1,0 1,01 1,02 1,03 1,04 1,05 1,06 1,08 1,12 1,22

Аналогичный расчет выполняют по металлу границы сплавления (β z , R wz , γ wz ).

При непосредственном примыкании стержней решетки к поясам с обработкой кромок (со снятием фаски с переменным углом наклона) соединительные швы на большей части длины можно считать стыковыми. Прочность сварного шва в этом случае проверяется по формуле

σ = £ 0,85R wу γ c ,

где А – площадь сечения прикрепляемой трубы; R wу – расчетное сопротивление сварного шва встык растяжению (R wу = 0,85 R у ) или сжатию (R wу = R у ).

Коэффициент 0,85 принимают для соединений впритык (тавровых) при угле раскрытия шва более 30 º без подварки корня сварного шва.

Если в узлах трубчатые стержни решетки пересекаются между собой, растянутый раскос целесообразно приварить к поясу по всему контуру сечения, а сжатый раскос или стойку частично прирезать и приварить к растянутому.

Точнее узловое бесфасоночное прикрепление труб можно рассчитать по методике, предложенной в . Пример расчета по данной методике представлен в прилож. 2.

Прочность стенки трубы пояса в местах примыкания к нему элементов решетки и опирания других элементов необходимо проверить на местный изгиб в соответствии с рекомендациями . При недостаточной толщине пояса его можно усилить накладкой. Накладки вырезают из трубы того же диаметра, что и пояс, или изгибают из листа толщиной не менее одной и не более двух толщин стенки поясной трубы.

Соединять трубы одинакового диаметра рационально встык на остающемся подкладном кольце (рис. 6). Расчет такого соединения на растяжение и сжатие производят по формуле

σ = £ R wу γ ,

где D ср – средний диаметр трубы с меньшей толщиной стенки; t – меньшая



толщина стенки соединяемых труб; γ – коэффициент условий работы сварного стыкового соединения: при сварке на подкладном кольце γ = 1, без него γ = 0,75.

Стыковое соединение получается равнопрочным с основным металлом при расчетном сопротивлении наплавленного металла не ниже расчетного сопротивления материала труб для сталей, не разупрочняющихся при сварке. При более низком расчетном сопротивлении наплавленного металла стыковое соединение на подкладном кольце можно выполнить косым швом.

Если невозможно обеспечить достаточную точность подгонки труб для сопряжения встык и равнопрочность сварного шва, стыковые соединения труб равных диаметров выполняют с помощью парных кольцевых накладок, гнутых из листа или вырезаемых из трубы того же или несколько большего диаметра. Толщину накладок и сварного шва рекомендуется принимать на 20 % больше толщины стыкуемых труб. Длина сварного шва при накладках с фигурными вырезами приближенно определяется по формуле

l w » 2n ,

где n – число лепестков по периметру трубы; а – размер лепестка (глубина фигурного выреза вдоль оси трубы).

Стыковые соединения труб разных диаметров, работающие на сжатие, а также соединения в местах перелома оси пояса могут выполняться при помощи торцевых прокладок или фланцевых соединений.

В сварных соединениях трубчатых элементов расчетную толщину шва рекомендуется принимать равной меньшей толщине стенки соединяемых труб. Минимальное значение катета шва k f min определяется по , максимальное значение составляет k f max = 1,2t п, где t п – наименьшая толщина стенки соединяемых труб.

Для опирания панелей или прогонов на верхнем поясе фермы предусматриваются специальные столики из круглых труб (рис. 8, 9 прилож. 2).

Опорные узлы ферм . Конструкция опорных узлов ферм зависит от вида опор (металлические или железобетонные колонны, кирпичные стены и т.д.) и способа сопряжения ферм с колоннами (жесткое или шарнирное).

При шарнирном сопряжении наиболее простым является узел опирания фермы на колонну сверху с использованием дополнительной стойки (надколонника) . Опорную стойку в зависимости от величины действующих на нее усилий можно запроектировать из прокатного или сварного двутавра (см. рис. 7, а) или из обрезка трубы (см. рис. 7, б).

В типовых конструкциях нижние пояса ферм соединяют с опорной двутавровой стойкой болтами нормальной точности. Верхние пояса стропильных ферм прикрепляют к фасонке надколонника болтами нормальной точности. Подвижность этого крепления обеспечивается овальны-

ми отверстиями в фасонках опорной стойки.

Опорное давление фермы F R передается с опорного фланца фермы через строганые или фрезерованные поверхности на опорную плиту колонны. Опорный фланец для четкости опирания должен выступать на 10…20 мм ниже фасонки опорного узла. Площадь торца фланца определяют из условия смятия

А тр ³ ,

где R р – расчетное сопротивление стали смятию торцевой поверхности.

При жестком сопряжении стропильная ферма примыкает к колонне сбоку (рис. 11 прилож. 2) и устанавливается на опорный столик, а усилия от опорного момента воспринимаются фланцевым соединением на болтах.

В курсовом проекте для расчета опорных узлов из таблицы основных сочетаний нагрузок для сечения 1–1 выбирают расчетные усилия N 1-1 , . Момент раскладывают на пару горизонтальных сил Н = / h ф оп, которые воспринимаются узлами крепления нижнего и верхнего поясов фермы.

Нижний опорный узел . Опорное давление фермы F R = N 1-1 передается с опорного фланца фермы через строганые или фрезерованные поверхности на опорный столик. Опорный фланец должен выступать на 10…20 мм ниже фасонки опорного узла. Опорный столик выполняют из листа t = 30…40 мм. Учитывая возможный эксцентриситет передачи нагрузки, возникающий из-за неплотного опирания фланца и его перекоса в своей плоскости, угловые швы крепления столика рассчитывают на усилие 1,2 F R . Высоту столика определяют из условия прочности сварного шва на срез

h ст = .

Опорный фланец прикрепляют к полке колонны на болтах грубой или нормальной точности, которые ставят в отверстия на 3…4 мм больше диаметров болтов, чтобы они не могли воспринять опорную реакцию фермы в случае неплотного опирания фланца на опорный столик. Для зданий, возводимых в районах с расчетной температурой наружного воздуха выше – 40 ºС, следует применять болты классов 4.6, 4.8, 5.6, 5.8, 6.6 и 8.8 по ГОСТ 15589–70*, ГОСТ 15591–70*, ГОСТ 7798–70*, ГОСТ 7796–70*.

В большинстве случаев опорный момент имеет знак минус, т.е. направлен против часовой стрелки. В этом случае горизонтальная сила Н прижимает фланец узла нижнего пояса к колонне и болты в узле ставятся конструктивно (обычно 6…8 болтов диаметром 20 или 24 мм). Болты в соединении устанавливаются в соответствии с .

Если в опорном узле возникает положительный момент и усилие Н отрывает фланец от колонны, то болты крепления фланца нижнего пояса к колонне работают на растяжение и их прочность следует проверить с учетом внецентренного приложения усилия (см. пример 4 прилож. 2).

Швы крепления нижнего пояса фермы к опорному фланцу работают в сложных условиях, т.к. воспринимают опорную реакцию фермы F R и, как правило, внецентренно приложенную силу Н . Под действием опорного давления F R швы срезаются вдоль шва и в них возникают напряжения

τ F = .

Усилие Н приводит к срезу шва в направлении, перпендикулярном оси шва, и появлению напряжений

τ Н = .

Поскольку центр шва может не совпадать с осью нижнего пояса, то на шов действует момент М = Н · е , где е – эксцентриситет приложения усилия Н . Под действием момента шов также работает на срез перпендикулярно оси шва и в нем возникают напряжения

τ М = .

Прочность шва крепления фланца к фасонке проверяют в наиболее напряженной точке на действие результирующих напряжений

τ = £ 0,85R wf γ wf γ с .

Верхний опорный узел . При отрицательном знаке опорного момента горизонтальная сила Н в узле крепления верхнего пояса стремится оторвать фланец от колонны и вызывает его изгиб. Напряжения во фланце определяют по формуле

σ = £ R у γ с ,

где l и t – соответственно длина и толщина фланца.

Желательно верхний опорный узел проектировать так, чтобы сила Н проходила через центр фланца. В этом случае усилие растяжения во всех болтах будет одинаковым и необходимое число болтов можно определить по формуле

где [N b ] – несущая способность болта на растяжение, [N b ] = R bt ·A bn ; R bt – расчетное сопротивление болта растяжению ; A bn – площадь сечения болта нетто .

Шов крепления верхнего пояса к фланцу работает на срез, и его прочность проверяют по формуле

τ = £ 0,85R wf γ wf γ с .

Если горизонтальная сила Н не проходит через центр фланца, то швы и болты рассчитывают с учетом эксцентриситета.

Если в опорном узле возникает положительный момент , то сила Н в узле крепления верхнего пояса прижимает фланец к колонне и болты в узле ставятся конструктивно (обычно 4…6 болтов).

При обеспечении податливости верхнего опорного узла шарнирное сопряжение фермы с колонной может быть выполнено и при опирании сбоку .

Укрупнительные стыки ферм. Решение укрупнительных узлов ферм при их поставке из отдельных отправочных элементов показано на рис. 10, а также в . Приведенные решения обеспечивают сборку конструкции из двух симметричных взаимозаменяемых полуферм.

Укрупнительные соединения ферм из круглых труб в коньковом узле рекомендуется проектировать фланцевыми с использованием центрирующей прокладки. Монтажные стыки работающих на растяжение нижних поясов ферм проектируются фланцевыми на высокопрочных болтах, монтажные стыки сжатых верхних поясов – на обычных болтах. Высокопрочные болты для монтажных стыков нижних поясов принимаются по ГОСТ 22353-77*, ГОСТ 22356–77* из стали 40Х «селект».

Пример расчета укрупнительных узлов верхнего и нижнего поясов приведен в прилож. 2.

РАЗРАБОТКА РАБОЧИХ ЧЕРТЕЖЕЙ

Рабочие чертежи рассчитанной фермы выполняются на стадии КМД (конструкции металлические). В курсовом проекте графическая часть выполняется на листе формата А1 (лист № 2 проекта) и содержит:

1. Расчетно-геометрическую схему фермы, на которой указываются привязка к осям здания, размеры элементов фермы и расчетные усилия (в кН) в стержнях отправочного элемента. Рекомендуемый масштаб 1:100.

2. Изображение отправочного элемента фермы (левого), вид сверху и снизу, сечения. Рекомендуемые масштабы: схема осевых линий – масштабы 1:20, 1:25, 1:30, 1:50, поперечные размеры элементов – масштабы 1:10, 1:15.

3.Узлы и сопряжения: монтажные узлы для верхнего и нижнего поясов в сборе, узлы опирания фермы на колонну (в курсовом проекте опорные узлы можно привести на листе № 1). Рекомендуемые масштабы 1:10, 1:15.

4. Спецификацию на отправочный элемент фермы.

5. Примечания к чертежу, включающие указания о способах сварки, сварочных материалах, преобладающих и не проставленных на чертеже размерах сварных швов, болтов, отверстий и т.д.

ТРЕБОВАНИЯ К ИЗГОТОВЛЕНИЮ И МОНТАЖУ

СТРОПИЛЬНЫХ ФЕРМ

Изготовление и монтаж стропильных ферм покрытия должны производиться в соответствии с требованиями СНиП III–18–75 «Металлические конструкции. Правила производства и приемки работ», СНиП 3.03.03–87 «Несущие и ограждающие конструкции».

При проектировании и изготовлении стропильных ферм из труб особое внимание следует уделять выбору стали для изготовления фланцев. Эта сталь должна поставляться в термически обработанном состоянии (нормализация или закалка с отпуском) и подвергаться на заводе – изготовителе металло- конструкций испытанию на статическое растяжение на образцах, вырезанных из листов в направлении поперек проката. Материал фланцев или готовые фланцы (до приварки к поясам ферм или после приварки) должны подвергаться ультразвуковому дефектоскопическому контролю на наличие внутренних расслоений, грубых шлаковых включений и т.п.

Защиту стальных ферм от коррозии следует производить в соответствии с требованиями СНиП 2.03.11–85 «Защита строительных конструкций от коррозии» и СНиП 3.04.03–85 «Защита строительных конструкций и сооружений от коррозии».

Допускаемые отклонения при монтаже ферм

(регламентированы СНиП III–18–75):

Отклонение отметок опорных узлов ферм ……………………….… ±20 мм

Стрела прогиба (кривизна) между точками закрепления участков сжатого пояса из плоскости …………………………….. 1/750 величины закреплен-

ного участка, но не более

Отклонение расстояний между осями ферм по верхнему поясу.… ±15 мм

СПИСОК ЛИТЕРАТУРЫ

1. СНиП 2.01.07-85*. Нагрузки и воздействия / Госстрой России. – М.: ГУП ЦПП, 2003. – 44 с.

2. СНиП II-23-81*. Стальные конструкции / Госстрой России. – М.: ГУП ЦПП, 2000. – 96 с.

3.Серия 1.460.3 –17.1КМ. Стальные конструкции покрытий одноэтажных производственных зданий с применением ферм с поясами из труб.

4. Давыдов Е.Ю. Расчет и конструирование стержневых конструкций с применением круглых и прямоугольных труб: Учеб. пособие. – Минск, 1983. – 120 с.

5. Кузин Н.Я. Проектирование и расчет стальных ферм покрытий промышленных зданий: Учеб. пособие. – М.: Изд-во АСВ, 1998. – 184 с.

6. Мандриков А.П. Примеры расчета металлических конструкций: Учеб. пособие для техникумов. 2-е изд., перераб. и доп. – М.: Стройиздат, 1991. – 431с.

7. Металлические конструкции. Общий курс: Учебник для вузов/ Под общ. ред. Е.И.Беленя. 6-е изд., перераб. и доп. – М.: Стройиздат, 1986. – 560 с.

8. Металлические конструкции: В 3 т. Т. 1. Элементы стальных конструк- ций: Учеб. пособие для строит. вузов/ Под ред. В.В.Горева. – М.: Высш.шк., 1997. – 527 с.

9. Металлические конструкции: В 3 т. Т. 2. Конструкции зданий: Учеб. пособие для строит. вузов/ Под ред. В.В.Горева. – М.: Высш.шк., 1999. – 528 с.

10. Мурашко Н.Н., Соболев Ю.В. Металлические конструкции производственных сельскохозяйственных зданий. – Минск: Высшейшая школа, 1987. – 278 с.

11. Пособие по проектированию стальных конструкций (к СНиП II-23-81*. Стальные конструкции)/ ЦНИИСК им.Кучеренко Госстроя СССР. – М., 1989. – 148 с.

12. Пособие по проектированию стальных конструкций из круглых труб/ ЦНИИСК им.Кучеренко Госстроя СССР. – М.: 1983. – 69 с.

13. Проектирование металлического каркаса одноэтажного производствен-ного здания. Ч. 1. Сбор нагрузок / Сост.: И.И.Зуева, Б.И.Десятов; Перм.гос. техн.ун-т. – Пермь, 1998. – 47 с.

14. Расчет стальных конструкций: Справ. пособие/ Я.М.Лихтарников, Д.В.Ладыженский, В.М.Клыков. 2-е изд., перераб. и доп.– Киев: Будивельник, 1984.– 368 с.

16. Руководство по проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций/ ВНИИПНПромстальконструкция. – М., 1988. – 48 с.

ПРИЛОЖЕНИЕ 1

Таблица 8

Ограниченный сортамент электросварных

прямошовных труб по ГОСТ 10704 – 91

Размеры, мм Площадь сечения, см 2 Радиус инерции, см Масса 1 м трубы, кг
D t
63,5 3,5 3,8 6,6 7,1 2,1 2,1 5,2 5,6
3,5 3,8 4,0 7,3 7,9 8,3 2,4 2,4 2,3 5,7 6,2 6,5
4,0 4,5 5,0 5,5 9,0 10,1 11,1 12,2 2,6 2,5 2,5 2,3 7,1 7,9 8,8 9,6
3,5 4,0 4,5 5,0 8,74 9,92 11,1 12,3 2,82 2,8 2,78 2,76 6,86 7,79 8,71 9,62
3,5 4,0 4,5 5,0 9,4 10,7 11,9 13,2 3,03 3,01 2,99 2,97 7,38 8,38 9,38 10,36
3,5 4,0 4,5 5,0 10,8 12,3 13,8 15,2 3,49 3,47 3,46 3,44 8,5 9,67 10,82 11,96
4,0 4,5 5,0 5,5 13,1 14,6 16,2 17,7 3,7 3,7 3,7 3,6 10,3 11,5 12,7 13,9

Продолжение табл. 8

Размеры, мм Площадь сечения, см 2 Радиус инерции, см Масса 1 м трубы, кг
D t
3,5 4,0 4,5 5,0 12,2 13,8 15,5 17,1 3,91 3,89 3,88 3,86 9,54 10,85 12,15 13,44
4,0 4,5 5,0 5,5 15,5 17,3 19,2 4,35 4,34 4,32 4,3 12,13 13,59 15,04 16,48
4,5 5,0 5,5 18,2 20,1 4,6 4,5 4,5 14,3 15,8 17,3
4,0 4,5 5,0 5,5 17,1 19,2 21,2 23,2 4,82 4,8 4,78 4,76 13,42 15,04 16,65 18,24
4,0 4,5 5,0 5,5 18,6 20,8 23,1 25,3 5,24 5,22 5,2 5,19 14,6 16,37 18,13 19,87
4,0 4,5 5,0 6,0 19,5 21,8 24,2 28,8 5,48 5,47 5,45 5,42 15,29 17,15 18,99 22,64
4,5 5,0 6,0 7,0 23,1 25,6 30,5 35,4 5,78 5,77 5,74 5,7 18,14 20,1 23,97 27,79
4,0 5,0 6,0 7,0 31,1 37,1 43,1 7,04 7,01 6,97 6,94 19,63 24,41 29,14 33,83

Окончание табл. 8

Размеры, мм Площадь сечения, см 2 Радиус инерции, см Масса 1 м трубы, кг
D t
4,5 5,0 5,5 6,0 7,0 8,0 30,3 33,6 36,9 40,2 46,6 7,59 7,57 7,55 7,54 7,51 7,47 23,8 26,39 28,96 31,52 36,6 41,63
5,0 5,5 6,0 7,0 8,0 42,1 46,2 50,3 58,5 66,6 9,48 9,46 9,45 9,42 9,38 33,04 36,28 39,51 45,92 52,82
5,0 6,0 7,0 8,0 50,3 60,1 69,9 79,6 11,3 11,3 11,2 11,2 39,46 47,2 54,89 62,54
5,0 6,0 7,0 8,0 9,0 66,1 79,2 92,1 14,9 14,9 14,8 14,8 14,8 51,91 62,14 72,33 82,46 92,56
7,0 8,0 9,0 10,0 11,0 18,5 18,5 18,4 18,4 18,4 90,3 115,6 128,2 140,8
8,0 9,0 10,0 11,0 12,0 22,0 22,0 21,9 21,9 21,8 122,7 137,8 152,9 167,9 182,9

ПРИЛОЖЕНИЕ 2

Проверяем сварные швы крепления раскосов к верхнему поясу.

1. Приближенный расчет (в запас несущей способности)

Раскос 1 . Отношение диаметра трубы раскоса к диаметру трубы верхнего пояса d / D = 127 / 140 = 0,907. Коэффициент ξ = 1,085.

Длину кривой пересечения труб, равную длине шва, определяем по формуле

l w = =

= = 52,4 см.

Так как β f R wf = 0,9 · 21,5 = 19,35 кН/см 2 < β z R wz = 1,05 · 18,45 = 19,373 кН/см 2 , то расчет ведем по металлу шва, где R wz = 0,45 · 41 = 18,45 кН/см 2 для стали С20. Катет углового шва k f = 5 мм.

Прочность углового шва, прикрепляющего раскос 1 к верхнему поясу впритык при фигурной резке концов, проверяем по формуле

Л.П. АБАШЕВА, И. И. ЗУЕВА

ПРОЕКТИРОВАНИЕ И РАСЧЕТ СТАЛЬНЫХ ФЕРМ ПОКРЫТИЙ ИЗ КРУГЛЫХ ТРУБ


Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

«Пермский государственный технический университет»

Л.П. Абашева, И. И. Зуева

Проектирование и расчет стальных ферм покрытий из круглых труб

Методические указания

по курсу «Металлические конструкции»

для студентов дневной и заочной форм обучения специальности 290300

«Промышленное и гражданское строительство»

Направление 653500 – Строительство

Специальность 290300 – Промышленное и гражданское строительство


Рецензент: канд. техн. наук, доц. Е.И.Новопашина

Абашева, Л.П.

А13 Проектирование и расчет стальных ферм покрытий из круглых труб:

метод. указания / Л.П.Абашева, И.И.Зуева; Перм. гос. техн. ун-т. Пермь, 2009. –

Настоящие методические указания написаны в развитие методических указаний по выполнению курсового проекта «Проектирование металлического каркаса одноэтажного производственного здания» по дисциплине

«Металлические конструкции». Указания содержат основные положения по расчету и конструированию легких стальных стропильных ферм из круглых труб. Предназначены для студентов дневного, вечернего и заочного отделений.

© ГОУ ВПО «Пермский государственный технический университет», 2009


ОБЩИЕ ПОЛОЖЕНИЯ

Современное развитие строительства требует применения экономичных, легких, долговечных, эстетически выразительных, надежных строительных конструкций. Традиционные фермы со стержнями из парных уголков и узловыми фасонками господствовали в строительстве длительный период, но стремление снизить расход металла привело к созданию ферм нового типа. Фермы из круглых электросварных труб по расходу стали относятся к числу наиболее эффективных конструкций.

ограждающими конструкциями (стальной профилированный настил и др.). При больших нагрузках и пролетах их эффективность, учитывая повышенную стоимость профилей, снижается. Целесообразно применение ферм из круглых

труб в зданиях с повышенной агрессивной средой, т.к. трубы более стойки к коррозии, доступны для осмотра и окраски.

Фермы из круглых электросварных труб весьма экономичны благодаря

рациональной форме профиля и бесфасоночным соединениям элементов решетки с поясами. Круглая труба обладает наиболее благоприятным для сжатых элементов распределением материала относительно центра тяжести и большим радиусом инерции, одинаковым во всех направлениях, что обеспечивает, по сравнению с открытыми профилями той же площади, повышенную общую и местную устойчивость стержней, хорошую работу на кручение. К достоинствам этого типа ферм следует отнести и возможность использования высокопрочных сталей.

Однако конструктивные трудности сопряжения элементов из круглых труб, более высокая их стоимость по сравнению с другими типами профилей и

дефицитность ограничивают применение таких ферм. При проектировании бесфасоночных соединений элементов решетки с поясами следует учитывать необходимость фигурной резки концов элементов, что практически возможно

только на заводах, оснащенных специальным оборудованием.

В настоящих методических указаниях изложены основные положения по расчету и конструированию легких стропильных ферм из круглых труб.

ИСХОДНЫЕ ДАННЫЕ НА ПРОЕКТИРОВАНИЕ

Во втором курсовом проекте по металлическим конструкциям

«Проектирование металлического каркаса одноэтажного производственного здания» исходные данные на проектирование стропильной фермы

конструирование фермы первого пролета (пролет А – Б, наибольший).


В курсовом проекте решаются следующие вопросы:

1. Компоновка стропильной фермы покрытия.

2. Статический расчет фермы.

3. Конструктивный расчет фермы.

4. Расчет и конструирование узлов фермы.

5. Разработка рабочих чертежей.

В дипломном проекте исходными данными на проектирование является технологическое задание.

КОМПОНОВКА СТРОПИЛЬНОЙ ФЕРМЫ

На этапе компоновки необходимо выбрать статическую схему и очертание фермы, назначить вид решетки, определить генеральные размеры фермы.

В курсовом проекте предлагается принять типовые фермы с параллельными поясами: высота фермы на опоре по осям поясов 2900 мм,

уклон по верхнему поясу 1,5 % обеспечивается за счет разной высоты опорных столиков; решетка – треугольная с дополнительными стойками;

размер панели верхнего пояса 3 м; сечения элементов фермы – из круглых труб (серия 1.460.3 –17.1КМ ). Для трубчатых элементов конструкций следует применять преимущественно электросварные трубы по ГОСТ 10704–91. При соответствующем обосновании допускается применять и

другие виды стальных труб.

Членение ферм по длине на отправочные марки производится согласно

«Инструкции по поставке стальных конструкций заводами металлоконструкций» (ВСН-141-80/ ММСС СССР): фермы из круглых труб

пролетами 24 м и 30 м поставляются двумя отправочными марками, пролетом

18 м – одной или двумя. Укрупнительные стыки в средних узлах для удобства сборки и изготовления необходимо проектировать так, чтобы правая и левая

полуфермы были взаимозаменяемы.

Схемы типовых стропильных ферм из круглых труб представлены на рис. 1. В типовых решениях обычно предусмотрена узловая передача

нагрузок, что дает возможность применять в покрытиях прогоны, стальные или железобетонные панели.

В курсовом проекте в зависимости от задания принимаются следующие

системы покрытий:

– прогонные покрытия: по стропильным фермам с шагом 3 м устанавливают прогоны пролетом l = 6 или 12 м, на которые опирается

стальной профилированный настил (теплые кровли) или стальной лист

(холодные кровли);

– беспрогонные покрытия: на стропильные фермы укладывают стальные панели шириной 3 м, пролетом l = 6 или 12 м.



В курсовом проекте состав кровли и покрытия для беспрогонных кровель и кровель с прогонами можно принять по .

В дипломном проекте при компоновке фермы необходимо исходить из технологического задания и требований унификации и модулирования геометрических размеров ферм. Компоновка ферм из круглых труб имеет свои

особенности. В фермах из круглых труб особенно рациональны параллельные пояса, что упрощает соединение элементов. Тип решетки должен быть максимально простым, т.к. сопряжение пяти и более стержней существенно усложняет конструкцию узла. В связи с эти наиболее приемлемой решеткой

является треугольная или треугольная с дополнительными стойками. Крайне нежелательно введение каких-либо шпренгельных элементов.

СТАТИЧЕСКИЙ РАСЧЕТ ФЕРМЫ

Расчет ферм из круглых труб производится в соответствии с требованиями,

Цель статического расчета заключается в определении максимальных усилий в элементах фермы, необходимых для подбора сечений элементов, расчета узлов и сопряжений.

Статический расчет стропильной фермы включает три этапа:

1. Сбор нагрузок.

2. Разработка расчетной схемы.

В курсовом проекте рассчитывается стропильная ферма первого пролета.

Для определения влияния опорного момента на усилия в элементах фермы предлагается принять жесткое сопряжение ригеля первого пролета с колонной.

3. Определение расчетных усилий в элементах фермы.

Сбор нагрузок на ферму

На стропильную ферму покрытия могут действовать следующие нагрузки:

1. Постоянные – от веса ограждающих (кровля) и несущих (фермы, связи,

прогоны, фонари) конструкций.

2. Кратковременные – атмосферные (снеговые, ветровые), технологичес- кие (от подвесного подъемно-транспортного оборудования, подвесных коммуникаций, электроосветительных установок, вентиляторов, галерей) и др.

Основными при расчете стропильных ферм являются постоянная и

снеговая нагрузки, поэтому в методических указаниях основное внимание уделено определению этих типов нагрузок.

Нагрузка от ветра вызывает в элементах фермы, как правило, усилия

противоположного знака по сравнению с усилиями от веса покрытия и снега.


Поэтому при расчете ферм ветровую нагрузку следует учитывать в том случае, если ее значение превышает вес покрытия (при легких кровлях и в районах с повышенной ветровой нагрузкой), а также при уклоне кровли более 30 º. При расчете ферм ветровая нагрузка на фонарь не принимается во внимание, т.к. оказывает незначительное влияние. В случае крепления стеновых панелей к опорной стойке ветровую нагрузку прикладывают к поясам ферм.

В курсовом проекте при расчете стропильной фермы ветровая нагрузка не учитывается.

Определение нагрузок на стропильную ферму от подвесного подъемно-

транспортного оборудования рассмотрено в .

Постоянные нагрузки , действующие на ферму, складываются из веса кровли, стропильной фермы, связей по покрытию, прогонов и др.

Вес кровли определяется суммированием ее отдельных частей, которые приведены в справочных таблицах . В таблицах приведен также вес металлических конструкций покрытий (стропильных и подстропильных ферм, связей, прогонов, фонарей) на 1 м 2 горизонтальной поверхности. В курсовом проекте собственный вес фермы (кН/м 2) рекомендуется определять по формуле

q с.ф

⎜1000 B ⎟ ф ф


где qn – суммарная нормативная равномерно распределенная нагрузка от собственного веса покрытия и снега, технологического оборудования и др.,

кН/м 2; В ф – шаг стропильных ферм, м; L ф – пролет стропильной фермы, м; αф –

коэффициент, зависящий от типа ригеля и стали: αф = 1,4 – для малоуглеродистых сталей, αф = 1,3 – для низколегированных сталей.

Узловая постоянная нагрузка на ферму (кН) собирается с грузовой площади, равной расстоянию между фермами, умноженному на размер панели верхнего пояса


F пост = (q ф +



) · В ф



где q ф – вес фермы и связей, кН/м2 ; q кр – вес кровли, кН/м2 ; α – угол наклона верхнего пояса к горизонту, в курсовом проекте можно принять соs α = 1; d


Постоянные нагрузки на ферму


Таблица 1


Наименование нагрузки γ
зависит от снегового района, в котором проектируется здание, от профиля покрытия, наличия фонарей, количества пролетов, размера уклона кровли.

Расчетное значение снеговой нагрузки на 1 м2 горизонтальной проекции покрытия определяется по формуле

S = S g μ ,

где μ – коэффициент перехода от веса снегового покрова земли к снеговой

нагрузке на покрытие ; S g – расчетное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимается по в зависимости от снегового района:

Снеговой район I II III IV V VI VII VIII
S g , кН/м 2 0,8 1,2 1,8 2,4 3,2 4,0 4,8 5,6

Для зданий с односкатными и двускатными покрытиями без фонарей и перепадов высот при угле наклона кровли α ≤ 25º коэффициент μ = 1, при α ≥ 60º μ = 0, в интервале 25º < α < 60º значения μ определяют линейной

интерполяцией. Для двух- и многопролетных зданий с двускатными покрытиями без фонарей и перепадов высот при угле наклона кровли α ≤ 15º

коэффициент μ = 1.

Схемы распределения снеговой нагрузки принимаются по .

В тех случаях, когда более неблагоприятные условия работы элементов фермы возникают при частичном загружении, рассматривается схема снеговой

нагрузки, действующей на части пролета. Так, при загружении снегом одной половины фермы в средних раскосах может измениться знак усилия, и

слабонагруженные растянутые элементы, имеющие большую гибкость,

окажутся сжатыми.

Узловая расчетная снеговая нагрузка на ферму (кН) определяется по формуле

F сн = S · В ф· d ,

где В ф – шаг стропильных ферм, м; d – длина панели верхнего пояса фермы.


Разработка расчетной схемы

Расчетную схему стропильных ферм принимают в виде стержневой системы с шарнирными или жесткими узловыми соединениями. При расчете легких ферм предполагается, что оси всех стержней прямолинейны, расположены в одной плоскости и пересекаются в узле в одной точке (в центре узла).

Статический расчет ферм из труб имеет свои особенности, т.к. жесткое сопряжение стержней в узлах может создавать условия к появлению значительных изгибающих моментов. Шарнирные соединения стержней в узлах допускается принимать, если отношение высоты сечения к длине

элемента h / l ≤ 1/10 при эксплуатации ферм в районах с расчетной температурой наружного воздуха выше – 40 °С и h / l ≤ 1/15 – в районах с температурой наружного воздуха ниже – 40 °С. При превышении этих

отношений необходимо учитывать дополнительные изгибающие моменты в

стержнях от жесткости узлов. При этом осевые усилия можно определять по шарнирной схеме, а дополнительные моменты находить приближенными способами.

Если оси стержней фермы не пересекаются в одной точке, то элементы

фермы следует рассчитывать с учетом соответствующих изгибающих моментов. Узловые моменты распределяют пропорционально погонной жесткости примыкающих к узлу элементов. Эксцентриситеты в узлах, за исключением опорных, допускается не учитывать, если они не превышают в фермах из трубчатых сечений 10 % высоты пояса с расположением эксцентриситетов по одну сторону его оси.

На рис. 2 показан пример расчетной схемы стропильной фермы пролетом

30 м с нумерацией узлов и элементов. В курсовом проекте при статическом расчете фермы принимаются шарнирные соединения стержней в узлах.

Определение расчетных усилий в элементах фермы

Статический расчет фермы выполняется на ЭВМ (программы «Ферма»,

«Лира», «SCAD») для каждого вида загружения отдельно.

Нагрузка, действующая на ферму, обычно прикладывается к узлам фермы,

к которым прикрепляются элементы поперечной конструкции (например,

прогоны кровли или подвесного потолка, железобетонные панели и т.д.), передающие нагрузку на ферму. Если нагрузка приложена непосредственно в панели, то в основной расчетной схеме она распределяется между ближайшими узлами, но дополнительно учитывается местный изгиб пояса от расположенной на нем нагрузки. Пояс фермы при этом рассматривают как неразрезную балку, опирающуюся на узлы фермы. Значения моментов в поясах приближенно можно определить по формулам:


– при сосредоточенной нагрузке М =


F d ⋅0,9


Где коэффициент 0,9


учитывает неразрезность пояса; F – значение сосредоточенной нагрузки;

– при равномерно распределенной нагрузке: пролетный момент в

q d 2


крайней панели М =

q d 2


; пролетный момент в промежуточной панели

q d 2


М = ; опорный момент М =


Где

ферму; d – длина панели.

При жестком сопряжении фермы с колонной в элементах фермы возникают также усилия от рамных моментов на опорах. Усилия в элементах

фермы от опорных моментов можно получить, заменив моменты парами


1 1 ф
2 2 ф
ф
горизонтальных сил: Н = М / h оп

между осями поясов фермы на опоре.


, Н = М / h оп


Где h оп


– расстояние


В курсовом проекте рекомендуется провести расчет стропильной фермы вначале на единичную узловую нагрузку F = 1 кН и на единичные моменты слева М 1 = –1 кНм и справа М 2 = –1 кНм. На рис. 3, 4 показаны схемы нагрузок на ферму пролетом 30 м.

От каждого вида нагрузки по любой из указанных выше программ определяются усилия в стержнях фермы. Для контроля обязательно распечатываются исходные данные, расчетные схемы с действующими нагрузками и усилия в элементах фермы. Расчет фермы в курсовом проекте выполняется только после статического расчета рамы в целом.

Результаты статического расчета фермы сводят в таблицу расчетных усилий (табл. 2). В курсовом проекте усилия в элементах фермы от различных нагрузок получают умножением усилий от единичных нагрузок на величины этих нагрузок (F пост, F сн, М 1, М 2). Значение опорного момента М 1 (М лев)

определяется по результатам расчета поперечной рамы каркаса здания из

таблицы расчетных усилий при комбинации усилий |M |max ; N соотв (в курсовом проекте – для сечения 1–1 верхней части колонны). При этом, взяв момент для левой опоры, необходимо определить по эпюрам изгибающих моментов, построенных для поперечной рамы, момент для правой опоры

М 2(М пр). Момент М 2(М пр) находится при той же комбинации нагрузок, что и М лев, независимо от знака моментов. При этом, если кратковременных нагрузок больше чем одна, то моменты от этих нагрузок умножаются на коэффициент сочетания ψ = 0,9.

Для подбора сечений элементов ферм необходимо получить для каждого элемента максимально возможное усилие, т.е. найти наиболее невыгодное сочетание (табл. 2). Расчетные усилия в элементах фермы получают сложением усилий, определенных при расчете на вертикальную нагрузку (F пост, F сн), и усилий от опорных моментов. При этом соблюдают

следующие правила:




1. Если знаки усилий от вертикальной нагрузки и моментов разные и усилия от моментов меньше по абсолютной величине, то за расчетное принимают усилие только от вертикальной нагрузки.

2. Если знаки усилий от вертикальной нагрузки и моментов разные, и усилия от моментов больше усилий от вертикальной нагрузки, то стержень

должен быть проверен также на алгебраическую сумму этих усилий.

3. Если усилия от вертикальной нагрузки и опорных моментов одного знака, то за расчетное усилие принимают их сумму.

Если при составлении сочетаний учитывается опорный момент, то усилие

от снеговой нагрузки принимается с коэффициентом сочетаний ψ = 0,9.

Для проверки нижнего пояса фермы на сжатие необходимо оценить комбинацию нагрузок, способных привести к появлению сжимающих усилий в

крайней панели нижнего пояса.

КОНСТРУКТИВНЫЙ РАСЧЕТ ФЕРМЫ Конструктивный расчет стропильной фермы включает три этапа:

1. Определение расчетных длин элементов фермы.

2. Подбор сечений элементов фермы.

3. Проектирование узлов фермы.

Расчетные длины элементов фермы

Расчетные длины элементов ферм из круглых труб в плоскости lefх и из плоскости фермы lefу определяются в соответствии с табл. 3 или . Так как форма потери устойчивости поясов из плоскости фермы зависит от того, в каких точках пояса закреплены от смещения, то необходимо к моменту подбора сечений элементов фермы запроектировать системы вертикальных связей по фермам и связей по верхним и нижним поясам ферм .

Расчетные длины заносят в таблицу подбора сечений элементов ферм

Подбор сечений элементов фермы

После определения расчетных усилий производится подбор сечений элементов фермы. Компонуя сечения стержней ферм, необходимо придерживаться следующих рекомендаций:

1. Сечения поясов следует выполнять постоянными или изменять не более одного раза в фермах пролетом 24 м и более, при меньших пролетах сечение поясов изменять не рекомендуется.


Таблица 3

Расчетные длины элементов плоских ферм из круглых труб

П р и м е ч а н и е: l – геометрическая длина элемента (расстояние между

центрами узлов); l 1 – расстояние между центрами узлов, закрепленных от смещения из плоскости фермы (поясами ферм, связями, плитами покрытия, прогонами и т.д.).

2. В фермах из круглых труб применяют в основном электросварные трубы диаметром от 40 до 530 мм. Во избежание продавливания диаметр трубы решетки d должен быть не меньше 0,3 диаметра трубы пояса D и не больше его

диаметра: 0,3D d D .

3. Для обеспечения качества сварки и повышения коррозионной

стойкости наименьшую толщину стенок труб для поясов и опорных раскосов следует принимать равной 3 мм, для элементов решетки – 2,5 мм, за

исключением стержней, выполняемых со сплющиванием концов в плоскости фермы.

4. В случае применения труб одного диаметра разница в толщинах стенок

должна быть более 1,5 мм.

6. Для удобства комплектования металла количество калибров профилей,

принимаемых в ферме, ограничивается: при пр олете фермы L ≤ 36 м



калибров.

7. Для снижения расхода стали целесообразно наиболее нагруженные элементы ферм (пояса, опорные раскосы) проектировать из стали повышенной прочности, а прочие элементы – из обычной стали. Именно замкнутая форма сечения позволяет эффективно использовать стали повышенной прочности. Для элементов ферм по сокращенному сортаменту рекомендуются электросварные трубы из стали марок Ст15, Ст20, ВСт3пс6, 09Г2С, 16Г2АФ, 14Г2 или 17Г1С.

В курсовом проекте марки сталей элементов фермы принимаются по заданию и при необходимости уточняются преподавателем.

Подбор сечений элементов ферм удобно оформлять в табличной форме

(см. табл. 4).

Различают следующие виды напряженного состояния элементов ферм:

1. Центрально-сжатые элементы. При подборе сечения центрально- сжатых элементов предварительно задаются гибкостью: для поясов и опорных раскосов λ з = 60 … 80, для решетки λ з = 100 … 120. По заданной гибкости по определяют коэффициент продольного изгиба φз (в первом приближении можно задаться непосредственно φз = 0,7 …0,8 для поясов и φз = 0,4 … 0,6 для элементов решетки). Требуемую площадь сечения находят

из условия устойчивости


А тр =


ϕз R y г c


где Ry – расчетное сопротивление стали по пределу текучести ; γс – коэффициент условий работы конструкций, принимаемый по табл. 5 в соответствии с рекомендациями .

По требуемой площади А А , , . В прилож. 1 приведена выборка из сортамента электросварных труб. Для подобранного сечения определяют гибкости и сравнивают с предельным значением:




< [λ] ; λу =




где [λ] – предельная гибкость (табл. 6). По большей гибкости уточняют коэффициент продольного изгиба φ по и проверяют устойчивость элемента по формуле



Ry γc .


Если гибкость стержня предварительно была задана неправильно и проверка показала перенапряжение или значительное (больше 5…10 %) недонапряжение, то проводят корректировку сечения, принимая промежуточное значение гибкости между предварительно заданным и фактическим значением.


Коэффициенты условий работы γс


Таблица 5


Элементы и соединения конструкций Коэффициенты условий работы γс
1. Сжатые элементы ферм перекрытий под залами, трибунами, под помещениями магазинов, книгохранилищ, архивов и т.д. при весе перекрытий, равном или большем временной нагрузке 2. Растянутые элементы ферм в сварных конструкциях 3. Панели поясов трубчатых ферм диаметром D при наличии расцентровки стержней решетки в узлах с эксцентриситетами е < 0,1D (при проверке прочности и устойчивости без учета изгибающих моментов) 4. Трубчатые элементы конструкций толщиной t , имеющие в торцах сварные прикрепления впритык (втавр) к другим трубчатым деталям толщиной 2t или к листовым деталям толщиной менее 4t , за исключением прикреплений к фланцам, имеющим с противоположной стороны соосное прикрепление трубы или центрирующую прокладку 5. Элементы решетки (стойки) бесфасоночных ферм, прикрепленные в узлах к двум другим элементам решетки (раскосам), имеющим разные знаки усилий 6. Сжатые трубчатые элементы диаметром D и толщиной t , имеющие сплющенные концы: а) со свободным формированием переходного участка от круглого сечения к сплющенному (с неплавным переходом) б) с принудительным формированием переходного участка с уклоном 1: 6 (с плавным переходом) 6. Сварные соединения трубчатых элементов без подкладного кольца: а) встык б) впритык (тавровое) 0,9 0,95 0,9 0,8 0,85 1 - 0,015 D , но не более t 0,7 и не менее 0,3 1,3 - 0,015 D , но не t более 1,0 и не менее 0,4 0,75 0,85

П р и м е ч а н и е: 1) коэффициенты γс , установленные в п. 2 и 7, а также в п.

4 и 6 одновременно не учитываются; 2) коэффициент γс , установленный в п.6, не распространяется на крепления соответствующих элементов в узлах;

3) коэффициенты γс , установленные в п. 4 и 6, при проверке устойчивости сжатых стержней не учитываются; 4) в не оговоренных случаях γс =1.


Таблица 6

Предельные гибкости элементов плоских ферм из круглых труб


П р и м е ч а н и е: α = ϕ


N – коэффициент, принимаемый не менее 0,5.

ARy гc


2. Центрально-растянутые элементы. Требуемую площадь сечения центрально-растянутого элемента определяют по формуле


А тр =


R y г c


Затем по сортаменту по А тр подбирают сечение трубы и определяют его фактические геометрические характеристики А, iх, iу . Для подобранного сечения определяют гибкости и сравнивают с предельными:




< [λ] ; λу =




Прочность принятого сечения проверяют по формуле

σ = N Ry γc .


Для нижнего растянутого пояса фермы подбор сечения рекомендуется начинать с наиболее нагруженной панели. Если гибкость нижнего пояса превышает предельную, то можно изменить схему связей по нижним поясам ферм постановкой дополнительных растяжек.

3. Внецентренно сжатые элементы . Предварительно задаются гибкостью элемента λх з = 60 … 80 и определяют отвечающие этой гибкости радиус инерции сечения тр = lefу / λх з, требуемую высоту сечения h тр = тр /αх и ядровое расстояние ρх тр = (тр)2 / z , где для сечений из круглых труб

αх = 0,355 и z = 0,5h тр (z – расстояние от центра тяжести до наиболее сжатого края сечения).

Определяют относительный и приведенный эксцентриситеты:


тр =


По условной гибкости
А тр = N .

ϕe R y ⋅г с

По требуемой площади А тр подбирают по сортаменту сечение трубы и определяют его фактические геометрические характеристики А, iх, iу . Для подобранного сечения уточняют следующие величины:



М А z




< [λ] ; л х


= λх ·


E ; =


х

N Jx


; mеf = · η .


По точно вычисленным характеристикам л х


и mеf по


принимают коэффициент φе и проверяют устойчивость стержня в плоскости действия момента по формуле


ϕe A


Ry γc .


Расчет на устойчивость при > 20 не требуется.

Устойчивость стержня из плоскости действия момента проверяют по


ϕу с A


Ry γc ,


где с – коэффициент, учитывающий изгибно-крутильную форму потери устойчивости, принимается в соответствии с ; φу – коэффициент

продольного изгиба относительно оси у у , определяют по по


гибкости стержня λу =




4. Внецентренно растянутые элементы . Подбор сечения внецентренно растянутых элементов ферм можно проводить как центрально-растянутых стержней. Прочность подобранного сечения проверяют по формуле


σ = N + M


Ry γc .


5. Подбор сечений элементов ферм по предельной гибкости . Ряд стержней легких ферм имеют незначительные усилия и, следовательно, небольшие напряжения. Сечения этих стержней подбирают по предельной гибкости. Зная

расчетную длину lefx и lefу и значение предельной гибкости [λ] (см. табл. 6),


определяют требуемые радиусы инерции тр =



И тр =




сортаменту подбирают сечение, имеющее наименьшую площадь.



Особенности конструирования ферм из круглых труб . Конструирование фермы следует начинать с вычерчивания осевых линий элементов, сходящихся в узлах. Стержни центрируют по геометрическим осям труб. При наличии расцентровки стержней в узлах необходимо при расчете фермы учитывать дополнительные узловые моменты. При неполном использовании несущей способности поясной трубы допускается эксцентриситет не более 1/4 диаметра поясной трубы.

При бесфасоночных соединениях в узлах тонкостенность поясов из условия местной устойчивости рекомендуется принимать не более значений,



Поделиться