Эпюра монжа комплексный чертеж плоской фигуры. Комплексный чертеж монжа. Комплексный чертёж точки

Методы проецирования, представленные в § 1.1, позволяют строить изображения (проекции) по заданному геометрическому образу (оригиналу), т.е. решать прямую задачу начертательной геометрии. Но в ряде случаев предусматривается решение обратной задачи, которая заключается в построении оригинала в пространстве по его проекциям на плоскости проекций.

Таким образом, приведенные выше проекционные чертежи (см. рис. 3, рис. 6, рис. 7, рис. 9) не позволяют восстановить оригинал, т.е. не обладают свойством «обратимости».

Рассмотрим схему построения обратимого чертежа, используемую в начертательной геометрии.

Ортогональное проецирование является частным случаем параллельного проецирования, когда направление проецирования перпендикулярно (ортогонально) плоскости проекций: S ^П i .

Ортогональное проецирование является основным в черчении, т.к. обладает большой наглядностью и позволяет при определенном расположении геометрических образов относительно плоскостей проекций сохранить ряд линейных и угловых параметров оригинала.

Французский геометр Гаспар Монж предложил ортогонально проецировать оригинал на две взаимно перпендикулярные плоскости проекций П 1 и П 2 .

X

Рис. 11 Рис. 12

П 1 – горизонтальная плоскость проекций; П 2 - фронтальная плоскость проекций; х = П 1 Ⴖ П 2 .

Плоскости проекций разделяют пространство на четыре четверти (или квадранты). Четверти нумеруются в порядке, указанном на рис. 11. Система координат выбрана из условия совпадения координатных плоскостей с плоскостями проекций. На рис. 12 показано проецирование точки А на плоскости П 1 и П 2 . Проецирующие лучи АА 1 и АА 2 перпендикулярны соответствующим плоскостям проекций, поэтому фронтальная (А 2 ) и горизонтальная (А 1 ) проекции точки А находятся на перпендикулярах А 1 А х и А 2 А х к оси проекций х.

Повернув плоскость проекций П 1 вокруг оси х на угол 90 0 (рис. 13), получим одну плоскость – плоскость чертежа, проекции А 1 и А 2 расположатся на одном перпендикуляре к оси проекций х – линии связи. В результате совмещения плоскостей проекций П 1 и П 2 получается чертеж, называемый эпюром Монжа. Эпюр Монжа называют в современной литературе еще комплексным чертежом. Это чертеж состоящий из двух и более связанных между собой проекций геометрического образа. В дальнейшем эпюр Монжа будем называть одним словом – чертеж.

Рис. 13 Рис. 14

Так как плоскости проекций безграничны, то чертеж точки А в системе П 1 /П 2 будет выглядеть так, как на рис. 14.

А 2 А х – расстояние от точки А до плоскости проекций П 1 ;

А 1 А х – расстояние от точки А до плоскости проекций П 2 .

Поэтому проекции точки А на две плоскости проекций полностью определяют ее положение в пространстве.

Для упрощения дальнейших рассуждений будем рассматривать лишь часть пространства, расположенную влево от профильной плоскости проекции П 3 .

П 3 – профильная плоскость проекций; Z = П 2 Ⴖ П 3 ; Z – ось ординат. Плоскость проекции П 3 перпендикулярна к П 1 П 2 .

На рис. 15 показано направление поворота на угол 90 0 плоскостей проекций П 3 и П 1 вокруг соответствующих осей координат до совмещения с П 2 .

Из рис. 15 видим, что ось Х делит горизонтальную плоскость проекций П 1 на две части: переднюю полу П 1 (оси Х и Y ) и заднюю полу П 1 (оси Х и Y ).

Ось абсцисс Х делит фронтальную плоскость проекций П 2 также на две части: верхнюю полу П 2 (оси Х и Z) и нижнюю полу (оси Х и -Z ).

Рис. 16

Из рис. 15 видно, что точки, расположенные в различных четвертях пространства, имеют определенные знаки координат. Эти знаки приведены в таблице.

Построение проекций точки А в системе П 1 /П 2 /П 3 показано на рис. 17

Рис. 17 Рис. 18

ОА х – удаление точки А от профильной плоскости проекций;

А 3 – профильная проекция точки А ;

А 1 А х А 2 , А 2 А z А 3 – линии связи.

На чертеже фронтальная и профильная проекции точки лежат на одной линии связи, перпендикулярной к оси Z , причем профильная проекция находится на таком же расстоянии от оси Z , что и горизонтальная от оси Х: А z А 3 = А х А 1 .

Горизонтальная проекция точки А 1 определяется координатами Х и Y

фронтальная А 2 – координатами Х и Z , профильная П 3 – координатами Y и Z .

Относительно плоскостей проекций точка может занимать следующие положения:

  1. Точка располагается в какой-либо четверти пространства, при этом обязательно условие, что Х ≠ 0; Y ≠ 0; Z ¹ 0.
  2. Точка принадлежит какой-либо плоскости проекций, при условии, что одна из координат должна быть равна «0».

А Î П 1 , если Ζ = 0;

А Î П 2 , если Y = 0;

А Î П 3 , если Х = 0.

3. Точка принадлежит оси координат, если две любые координаты будут равны «0».

А Î Х, если Y = 0; Z = 0;

А Î U, если Х = 0; Z = 0;

А Î Z, если Х = 0; Y = 0.

Проекция геометрического объекта на одну плоскость, рассмотренная нами ранее, не дает полного и однозначного представления о форме геометрического объекта. Поэтому рассмотрим проецирование хотя бы на две взаимно перпендикулярные плоскости (рис. 1.2), одна из которых расположена горизонтально, а другая вертикально.

Несмотря на наглядность, с чертежом, изображенным на рис 1.2, а работать неудобно, т.к. горизонтальная плоскость на нем показана с искажением. Удобнее выполнять различные построения на чертеже, где плоскости проекций расположены в одной плоскости, а именно, плоскости чертежа. Для этого надо горизонтальную плоскость развернуть вокруг оси ОХ на 90° и совместить с фронтальной так, чтобы передняя пола горизонтальной плоскости ушла вниз, а задняя вверх. Этот метод предложил Г. Монж.

Рис. 1.2. Построение эпюра Монжа:

а) пространственная картина расположения проекций точки А; б) плоскостная картина расположения проекций точки А.

Поэтому чертеж, полученный таким образом (рис. 1.2, б), называется эпюром Монжа или комплексным чертежом.

Обычно двух проекций недостаточно, чтобы составить полное представление о рассматриваемом геометрическом объекте. Поэтому предлагается ввести третью плоскость проекций, ортогональную первым двум (рис.1. 3, а).

Рис. 1.3. Построение трехкартинного комплексного чертежа (эпюра Монжа):

а) пространственная модель плоскостей проекций; б) трехкартинный комплексный чертеж.

Тогда плоскость П 1 называется горизонтальной плоскостью проекций, П 2 - фронтальной плоскостью проекций (т.к. она расположена перед нами по фронту), П 3 - профильной плоскостью проекций (расположена в профиль по отношению к наблюдателю). Соответственно А 1 - горизонтальная проекция точки А , А 2 - фронтальная проекция точки А, А 3 - профильная проекция точки А .

Оси ОХ, ОY, OZ называются осями проекций. Они аналогичны координатным осям декартовой системы координат с той лишь разницей, что ось ОХ имеет положительное направление не вправо, а влево. Теперь, чтобы получить проекции в одной плоскости (плоскости чертежа) необходимо и профильную плоскость проекций развернуть до совмещения с фронтальной. Для этого ее нужно развернуть на 90° вокруг оси OZ , причем переднюю полу плоскости развернем вправо, а заднюю влево. В результате получим трехкартинный комплексный чертеж (эпюр Монжа), показанный на рис. 1.3, б. Так как ось ОY разворачивается вместе с двумя плоскостями П 1 и П 3 , то на комплексном чертеже ее изображают дважды.

Из этого следует важное правило взаимосвязи проекций. А именно, исходя из рис. 1.3, а, в математической форме его можно записать в виде: А 1 А x = ОА y = А z А 3 . Следовательно, в текстологическом виде оно звучит так: расстояние от горизонтальной проекции точки до оси ОХ равно расстоянию от профильной проекции указанной точки до оси ОZ . Тогда по двум любым проекциям точки можно построить третью. Горизонтальную и фронтальную проекции точки А связывает вертикальная линия связи, а фронтальную и профильную проекции – горизонтальная.

В связи с тем, что комплексный чертеж представляет собой свернутую в плоскости модель пространства, на нем нельзя изобразить проецируемую точку (за исключением случаев, когда ее положение совпадает с одной из проекций). Исходя из этого, следует иметь в виду, что на комплексном чертеже мы оперируем не самими геометрическими объектами, а их проекциями.

Проекция геометрического объекта на одну плоскость, рассмотренная нами ранее, не дает полного и однозначного представления о форме геометрического объекта. Поэтому рассмотрим проецирование хотя бы на две взаимно перпендикулярные плоскости (рис. 1.2), одна из которых расположена горизонтально, а другая вертикально.

Несмотря на наглядность, с чертежом, изображенным на рис 1.2, а работать неудобно, т.к. горизонтальная плоскость на нем показана с искажением. Удобнее выполнять различные построения на чертеже, где плоскости проекций расположены в одной плоскости, а именно, плоскости чертежа. Для этого надо горизонтальную плоскость развернуть вокруг оси ОХ на 90 и совместить с фронтальной так, чтобы передняя пола горизонтальной плоскости ушла вниз, а задняя вверх. Этот метод предложил Г. Монж.

Рис. 1.2. Построение эпюра Монжа:

а) пространственная картина расположения проекций точки А; б) плоскостная картина расположения проекций точки А.

Поэтому чертеж, полученный таким образом (рис. 1.2, б), называется эпюром Монжа или комплексным чертежом.

Обычно двух проекций недостаточно, чтобы составить полное представление о рассматриваемом геометрическом объекте. Поэтому предлагается ввести третью плоскость проекций, ортогональную первым двум (рис.1. 3, а).

Рис. 1.3. Построение трехкартинного комплексного чертежа (эпюра Монжа):

а) пространственная модель плоскостей проекций; б) трехкартинный комплексный чертеж.

Тогда плоскость П 1 называется горизонтальной плоскостью проекций, П 2 - фронтальной плоскостью проекций (т.к. она расположена перед нами по фронту), П 3 - профильной плоскостью проекций (расположена в профиль по отношению к наблюдателю). Соответственно А 1 - горизонтальная проекция точки А , А 2 - фронтальная проекция точки А, А 3 - профильная проекция точки А .

Оси ОХ, О Y , OZ называются осями проекций. Они аналогичны координатным осям декартовой системы координат с той лишь разницей, что ось ОХ имеет положительное направление не вправо, а влево. Теперь, чтобы получить проекции в одной плоскости (плоскости чертежа) необходимо и профильную плоскость проекций развернуть до совмещения с фронтальной. Для этого ее нужно развернуть на 90 вокруг оси OZ , причем переднюю полу плоскости развернем вправо, а заднюю влево. В результате получим трехкартинный комплексный чертеж (эпюр Монжа), показанный на рис. 1.3, б. Так как ось О Y разворачивается вместе с двумя плоскостями П 1 и П 3 , то на комплексном чертеже ее изображают дважды.

Из этого следует важное правило взаимосвязи проекций. А именно, исходя из рис. 1.3, а, в математической форме его можно записать в виде: А 1 А x = ОА y = А z А 3 . Следовательно, в текстологическом виде оно звучит так: расстояние от горизонтальной проекции точки до оси ОХ равно расстоянию от профильной проекции указанной точки до оси О Z . Тогда по двум любым проекциям точки можно построить третью. Горизонтальную и фронтальную проекции точки А связывает вертикальная линия связи, а фронтальную и профильную проекции – горизонтальная.

В связи с тем, что комплексный чертеж представляет собой свернутую в плоскости модель пространства, на нем нельзя изобразить проецируемую точку (за исключением случаев, когда ее положение совпадает с одной из проекций). Исходя из этого, следует иметь в виду, что на комплексном чертеже мы оперируем не самими геометрическими объектами, а их проекциями.

ВВЕДЕНИЕ.......................................................................................................4

1 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ.....................4

2 ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ..................................................................5

3 ТЕМА 1 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА(точка, прямая) .......6

3.1 Комплексный чертёж точки. ........ .............................................................6

Упражнения. ......................................................................................................6

Задачи. ................................................................................................................7

Примеры решения задач…………………………………..............................8

Тесты самоконтроля знаний………………………………..........................10

3.2 Комплексный чертеж прямой..................................................................11

Упражнения. .....................................................................................................11

Задачи. ...............................................................................................................12

Примеры решения задач………………………………….............................13

Тесты самоконтроля знаний……………………………...............................15

4 ТЕМА 2 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА (ПЛОСКОСТЬ)......17 ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ

4.1 Комплексный чертёж плоскости............................................................17

Упражнения. …………….................................................................................17

Задачи. …...........................................................................................................19

Примеры решения задач…………………………………….........................21

Тесты самоконтроля знаний………………………………….......................21

4.2 Перпендикулярность прямых и плоскостей...........................................23

Упражнения. .....................................................................................................23

Задачи. …...........................................................................................................24

Примеры решения задач…………………………………….........................25

Тесты самоконтроля знаний………………………………….......................26

5 ТЕМА 3 Взаимное положение прямых И ПЛОСКОСТЕЙ

Упражнения. .....................................................................................................27

Задачи. ...............................................................................................................29

Примеры решения задач. .................................................................................30

Тесты самоконтроля знаний………………………………….......................31

6 ТЕМА 4 СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА.......................33

Упражнения. .....................................................................................................33

Задачи...............................................................................................................34

Примеры решения задач. ................................................................................36

Тесты самоконтроля знаний…………………………………......................38

7 ТЕМА 5 МНОГОГРАННЫЕ ПОВЕРХНОСТИ....................................40

Упражнения. .....................................................................................................40

Задачи. ...............................................................................................................41

Примеры решения задач. .................................................................................43

Тесты самоконтроля знаний...........................................................................44

БИБЛИОГРАФИЧЕСКИЙ СПИСОК………………..................................47

ПРИЛОЖЕНИЕ .................................................................................................47

ВВЕДЕНИЕ

Учебное пособие предназначено для лабораторных занятий по начертательной геометрии для студентов факультета землеустройства и лесного хозяйства (направления: 250700 - Ландшафтная архитектура, 250100 - Лесное дело).

Пособие используется студентами при самостоятельной подготовке к очередному занятию. Для этого он должен:

Изучить теоретический материал по заданной теме и ответить на вопросы самоконтроля;

Выполнить упражнения по заданной теме.

В начале занятия преподаватель проверяет теоретическую подготовку студентов и решение упражнений по заданной теме. В конце каждой темы рассматриваются примеры решения типовых задач . Приступая к решению упражнений новой темы, полезно ознакомиться с соответствующим примером и следовать ему в оформлении чертежа.

Пособие может быть использовано студентами также и для самоконтроля полученных знаний по тестам , приведенным в пособии после примеров решения типовых задач. Для этого он должен:

После каждого занятия ответить на тесты самоконтроля знаний, а по приведенным в приложении пособия ответам проверить правильность своих знаний.

В процессе работы с пособием студенты учатся практическим приемам, применяемым при решении задач, что позволяет им выработать навыки и умения самостоятельного их решения. По мере накопления этого опыта студенты начинают мыслить самостоятельно на профессиональном уровне, развивая при этом пространственное и логическое мышление.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ И

ОФОРМЛЕНИЮ ЗАДАЧ

При решении задач необходимо руководствоваться следующими рекомендациями:

1. По данным проекциям геометрических фигур, составляющим исходные данные задачи, представить их форму и взаимное расположение в пространстве как по отношению друг к другу, так и относительно плоскостей проекций.

2. Наметить «пространственный» план решения задачи. На этой стадии решения следует обращаться к теоремам из курса элементарной геометрии разделы «Планиметрия» и «Стереометрия», а также к теоретическому материалу в учебниках и лекциях.

3. Определить алгоритм решения задачи, кратко записать последовательность графических построений, используя принятые обозначения.

4. Приступить к геометрическим построениям.

При графическом решении задачи точность ответа зависит не только от выбора правильного пути её решения, но и от точности выполнения геометрических построений. Поэтому, решая задачу, необходимо пользоваться чертёжными инструментами. Задачи должны решаться в отдельной тетради в клетку для лабораторных занятий. Тип и толщина линий выполняются в соответствии с ГОСТ 2.303-68 ЕСКД. Построения выполняются карандашом. Для облегчения чтения чертежа, получающегося в процессе решения, целесообразно применять цветные карандаши: заданные элементы обводятся черным цветом, вспомогательные построения – синим, искомые элементы – красным. Эту же цель преследует обязательное обозначение всех точек и линий. При этом обозначение следует делать в процессе решения задачи сразу после проведения линии или определения точки пересечения линий. Надписи и буквенные обозначения выполнять стандартным шрифтом в соответствии с ГОСТ 2.304-84 ЕСКД.

Тетрадь с решенными задачами предъявляется преподавателю на зачете или экзамене.

ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ

А, В, С, D, …или 1, 2, 3, 4, … - обозначение точки; прописные буквы латинского алфавита или арабские цифры.

о – изображение точки (области расположения точки); круг диаметром 2-3 мм тонкой линией от руки.

a, b, c, d, … - линия в пространстве; строчные буквы латинского алфавита.

Γ, Σ, Δ,… - плоскости, поверхности; прописные буквы греческого алфавита.

α, β, γ, δ, … - углы; строчные буквы греческого алфавита.

П – плоскость проекций (картинная плоскость); прописная буква (пи) греческого алфавита.

АВ – прямая, проходящая через точки А и В .

[AB] – отрезок, ограниченный точками А и В .

[AB ) – луч, ограниченный точкой А и проходящий через точку В.

/AB /–натуральная величина отрезка[AB ] (равная оригиналу).

/ /–расстояние от точки А до линии а.

/ /–расстояние от точки А до плоскости Σ .

/ab /–расстояние между линиями а и b.

/GD / - расстояние между поверхностями G и D.

≡- совпадение (А≡В – точки А и В совпадают).

║ - параллельны.

^ - перпендикулярны.

∩ - пересечение.

Î - принадлежит, является элементом множества.

ÐАВС – угол с вершиной в точке В.

Изображение знаков должно выполняться в соответствии с принятыми стандартами оформления технической и научной документации.

ТЕМА 1 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА

(ТОЧКА, ПРЯМАЯ)

Вопросы самоконтроля

1. Что называется проекцией точки?

2. Что называется осью проекций? Какие прямые линии называются «линиями связи» и как они расположены относительно оси проекций?

3. Можно восстановить положение точки в пространстве по ее проекциям?

4. Чем можно задать прямую линию на комплексном чертеже?

5. Какие прямые называются прямыми общего положения? Назовите прямые частного положения.

Метод Монжа, комплексный чертеж.

Проекции точки, комплексный чертеж.

Взаимно перпендикулярные плоскости проекций.

Методы прямоугольного проецирования на две и три

Свойства ортогонального проецирования

Основными и неизменными свойствами (инвариантами) ортогонального проецирования являются следующие:

1) проекция точки – точка;

2) проекция прямой – в общем случае прямая; если направления проецирования совпадает с направлением прямой, то проекция последней – точка;

3) если точка принадлежит прямой, то проекция этой точки принадлежит проекции прямой.

4) проекции параллельных прямых параллельны между собой;

5) отношение отрезков прямой равно отношению их проекций;

6) отношение отрезков двух параллельных прямых равно отношению их проекций;

7) проекцией точки пересечения двух прямых является точка пересечения проекций этих прямых;

8) если прямая или плоская фигура параллельны плоскости проекций, то на эту плоскость они проецируются без искажения;

9) если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в прямой угол.

В случае если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным . Основные принципы построения таких чертежей изложены Гаспаром Монжем - крупным французским геометром конца 18, начала 19 веков, 1789-1818 гᴦ. одним из основателœей знаменитой политехнической школы в Париже и участником работ по введению метрической системы мер и весов.

Постепенно накопившиеся отдельные правила и приемы таких изображений были приведены в систему и развиты в труде Г. Монжа "Geometrie descriptive".

Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций (рис.6). Одну из плоскостей проекций П 1 располагают горизонтально, а вторую П 2 - вертикально. П 1 - горизонтальная плоскость проекций, П 2 - фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Рисунок 6. Пространственная модель двух плоскостей проекций Линия пересечения плоскостей проекций принято называть осью координат и обозначается x 21 . Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти. Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П 1 совмещают вращением вокруг оси x 12 с плоскостью П 2 (рис.6).Проекционный чертеж, на котором плоскости проекций со всœем тем, что на них изображено, совмещенные определœенным образом одна с другой, принято называть эпюром Монжа (франц. Epure – чертеж.) или комплексным чертежом.

Метод Монжа, комплексный чертеж. - понятие и виды. Классификация и особенности категории "Метод Монжа, комплексный чертеж." 2017, 2018.



Поделиться