Чем определяется величина заряда тела. Электрический заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Диэлектрическая проницаемость и ее физический смысл

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q . В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными .

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом . Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е ; 1,7е ; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.



7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q 1 и q 2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны , отрицательно заряженные электроны и нейтральные частицы – нейтроны . Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

m e = 9,11∙10 –31 кг.

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

k = 9∙10 9 м/Ф.

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называютэлектростатикой .

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε 0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε .

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Электрический заряд и его основные свойства.

Закон сохранения электрического заряда.

Электрический заряд - это скалярная физическая величина, определяющая интенсивность электромагнитных взаимодействий. Единица заряда - [q] кулон.

Свойства электрического заряда :

1. Электрический заряд не является знакоопределенной величиной, существуют как положительные, так и отрицательные заряды.

2. Электричесий заряд - величина инвариантная. Он не изменяется при движении носителя заряда.

3. Электричесий заряд аддитивен.

4. Электричесий заряд кратен элементарному. q = Ne. Это свойство заряда называется дискретностью (квантованностью).

5. Суммарныйэлектричесий заряд всякой изолированной системы сохраняется. Это свойство естьзакон сохранения электрического заряда.

Закон сохранения электрического заряда - электрические заряды не создаются и не исчезают, а только передаются от одного тела к другому или перераспределяются внутри тела.

Электростатика. Точечный заряд. Закон Кулона. Принцип суперпозиции сил. Объемная поверхностная и линейная плотность заряда.

Электростатика - раздел учения об электричестве, изучающий взаимодействие неподвижных электрических зарядов.

Точечный заряд – это заряженное тело, размерами и формой, которого можно пренебречь.

Формулировка закона Кулона: Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой так, что одноименные заряды отталкиваются, а разноименные притягиваются.

Принцип суперпозиции сил заключается в том, что действие нескольких сил можно заменить действием одной - равнодействующей. Равнодействующей называется единственная сила, результат действия которой эквивалентен одновременному действию всех сил, приложенных к этому телу.

Линейная плотность заряда: заряд, приходящийся на единицу длины.

Поверхностная плотность заряда: заряд, приходящийся на единицу площади.

Объемная плотность заряда: заряд, приходящийся на единицу объема.

Напряженность электрического поля. Силовые линии электростатического поля. Напряженность поля неподвижного точечного заряда. Электростатическое поле. Принцип суперпозиции.

Напряжённость электрического поля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда q.

Силовые линии электростатического поля имеют следующие свойства:

1. Всегда незамкнуты: начинаются на положительных зарядах (или на бесконечности) и заканчиваются на отрицательных зарядах (или на бесконечности).

2 . Не пересекаются и не касаются друг друга.

3 . Густота линий тем больше, чем больше напряжённость, то есть напряжённость поля прямо пропорциональна количеству силовых линий, проходящих через площадку единичной площади, расположенную перпендикулярно линиям.

Потенциальность электростатического поля. Циркуляция поля вектора Е. Теорема о циркуляции вектора Е электростатического поля в инт. и диф. формах, их содержательный смысл.

Так как для напряженности электростатического поля справедлив принцип суперпозиции, то потенциальным является любое электростатическое поле .

Теорема о циркуляции вектора Е электростатического поля: Циркуляция Е по замкнутому контуру L всегда равно нулю.

В диф. форме:

Электростатическое поле является потенциальным.

Потенциальная энергия точечного заряда в электростатическом поле. Потенциал электростатического поля. Эквипотенциальные поверхности. Потенциал поля точечного неподвижного заряда. Принцип суперпозиции для потенциала.

Потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциал – скалярная величина, является энергетической характеристикойполя в данной точке и равный отношению потенциальной энергии, которой обладает пробный заряд, к этому заряду.

Эквипотенциальная поверхность – это поверхность, на которой потенциал данного поля принимает одно и то же значение.

Потенциал поля точечного неподвижного заряда:

Принцип суперпозиций для потенциалов - Потенциал поля, созданного ГРУ ппой зарядов в произвольной точке равен сумме потенциалов полей, созданных каждым зарядом.

Момента

и приобретает потенциальную энергию

Диполь обладает:

· минимальной пот. энергией:

в положении (положение устойчивого равновесия);

· максимальной пот. энергией:

в положении (положение неустойчивого равновесия);

Во всех остальных случаях возникает момент сил, поворачивающий диполь в положение устойчивого равновесия.

Во внешнем неоднородной электростатическом поле на точечный диполь действует момент сил и этот диполь обладает потенциальной энергией

Сила, действующая на точечный диполь в неоднор. эл. стат. поле:

Во внешнем неоднородном эл. стат. поле точечный диполь под одновременным действием момента сил поворачивается в направлении поля и силы, перемещается в направлении, где по модулю больше (вытягивается в сторону более сильного поля).

В проводнике.

В проводнике имеются своб. заряды – носители тока, способные под действием сколь угодно малой силы перемещ. по всему объему проводника.

Электростатическая индукция – явление перераспределения зарядов на поверхности проводника под действием стор. электростатического поля.

Перераспредел. зарядов прекращ., когда любой точке проводника будет выполн. условие:

Т.к. , то напряженность электростатического поля в любой точке внутри проводника:

Поскольку то

– потенциал проводника одинак. во всех его внутр. точках и на поверхности

Условия стационарного распределения зарядов в проводнике:

2.Изб. заряды внутри проводника отсутств., а индуцированные заряды распределены

на его поверхности ()

3.Вблизи внешней стороны поверхн. проводника вектор направлен по нормали к этой

поверхности в каждой её точке ()

4.Весь объем проводника явл. эквипотенциальной обл., а его поверхность – эквипотенциальна

Контур с током в магнитном поле. Момент сил, действующих на контур с током, и потенциальная энергия контура с током в однородном магнитном поле. Работа сил магнитного поля при перемещении контура с током.

Магнитный момент линейного тока I, идущего по замкнутому плоскому контуру (все точки которого лежат в одной плоскости):

S – площадь поверхности, ограниченной контуром; в СИ = А*

Результирующая сила Ампера, действующая на контур с током в однородном магнитном поле равна 0.

Поэтому суммарный момент амперовых сил не зависит от выбора точки О, относительно которой он вычисляется:

Момент сил, действующий на замкнутый контур с током I в магнитном поле индукции :

При M=0 (т.е. контур с током находится в положении равновесия).

При на контур действует максимальный момент сил .

Потенциальная энергия замкнутого контура с током в магнитном поле:

Работа сил Ампера:

При этом направление положительной нормали образует правовинтовую систему. Данная формула справедлива в случае произвольного перемещения контура любой формы в магнитном поле.

29. Магнитное поле в веществе. Намагничение диа- и парамагнетиков. Вектор намагниченности . Теорема о циркуляции поля вектора в интегральной и дифференциальной форме.

Любое вещество – магнетик (т.е. способно намагничиваться под действием внешнего магнитного поля)

Ток проводимости (I, ) – ток, обусловленный направленным движением в веществе носителей тока.

Молекулярные токи () – токи, связанные с орбитальным движением и спином элементарных частиц в атомах вещества. Каждый молекулярный ток обладает магнитным моментом.

Диамагнетики – вещества, магнитные моменты атомов которых в отсутствие внешнего магнитного поля равны нулю, т.е. магнитные моменты всех элементарных частиц атома (молекулы) скомпенсированы.

Парамагнетики – вещества, атомы которых в отсутствие внешнего магнитного поля имеют отличный от нуля магнитный момент, но их направление ориентировано хаотично, поэтому .

При внесении во внешнее магнитное поле диамагнетика в каждом его атоме индуцируется дополнительный момент , направленный против внешнего магнитного поля .

При внесении во внешнее магнитное поле парамагнетика магнитный момент его атомов (молекул) приобретают ориентированную по направлению внешнего поля .

Намагничение вещества обусловлено приемущественной ориентацией или индуцирование отдельных молекул в одном направлении. Намагничение вещества приводит к возникновению токов намагничения (усредненные по макроскопической области молекулярные токи):

где - вектор плотности тока намагничивания, идущего через ориентированную поверхность S.

Согласно принципу суперпозиции:

где – индукция внешнего поля;

Индукция магнитного поля токов намагничивания.

Вектор намагниченности – количественная характеристика намагниченного состояния вещества, равная отношению суммарного магнитного момента физически малого объема магнетика у этому объему :

В СИ [J] = А/м.

Теорема о циркуляции вектора магнитостатического поля в дифференциальной форме:

в любой точке магнитостатического поля ротор вектора равен вектору плотности тока намагничивания в этой же точке.

Электростатика – это раздел физики, в котором изучается взаимодействие и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

В основе всего разнообразия явлений природы лежат четыре фундаментальных взаимодействия между элементарными частицами

    гравитационное,

    электромагнитное,

Электрический заряд – носитель электромагнитного взаимодействия .

Фундаментальные свойства зарядов

1. Электрический заряд может быть двух типов: положительный (при трении кожи о стекло) и отрицательный (при трении меха с эбонитом). Тела, имеющие электрические заряды одного знака, отталкиваются друг от друга, тела с зарядами противоположных знаков – притягиваются.

2. Носителями электрического заряда являются заряженные элементарные частицы с элементарным зарядом (Кулон – единица электрического заряда в СИ)

протон – носитель положительного заряда (+e ), (m p =1,6710 -27 кг);

электрон – носитель отрицательного заряда (–e ), (m e =9,1110 -31 кг).

Заряд любого другого тела составляет целое кратное от элементарного электрического заряда .

3. Фундаментальный закон сохранения электрического заряда (выполняется в любых процессах рождения и уничтожения элементарных частиц): в любой электрически изолированной системе алгебраическая сумма зарядов не изменяется .

4. Электрический заряд является релятивист c ки инвариантным : его величина не зависит от системы отсчета, а значит, не зависит от того, движется он или покоится.

Итак, зарядить тело положительно – значить отнять у него определенное число электронов, а зарядить отрицательно – сообщить телу определенное число лишних электронов. Отметим, что заряды тел порядка 1 нКл = 10 -9 Кл можно считать уже весьма значительными. Для того чтобы тело имело такой заряд, число электронов в нем должно отличаться от числа протонов на ! штук.

Классификация тел в зависимости от концентрации свободных зарядов

    Проводники (тела со свободным перемещением зарядов по всему объему);

    1. Проводники I рода – металлы (заряды перемещаются без химических превращений);

      Проводники II рода – электролиты (перемещение зарядов сопровож­дает­ся химическими превращениями);

    Полупроводники (тела с ограниченным перемещением зарядов);

    Диэлектрики (тела, в которых практически отсутствуют свободные заряды);

Единица электрического заряда Кулон – производная от единицы силы тока, это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с (1Кл=1А1с).

Закон Кулона. Диэлектрическая проницаемость и ее физический смысл

Рис. 1. Схема взаимо­дей­ствия точечных зарядов

Закон Кулона – закон о взаимодействии точечных зарядов: сила взаимодействия F двух неподвижных точечных зарядов q 1 и q 2 в вакууме направлена вдоль линии, соединяющей оба заряда, прямо пропорциональна величинам этих зарядов и обратно пропор­ци­ональна квадрату расстояния между ними:


, (1)

где k – коэффициент пропорциональности, зависящий от выбора единиц измерения. В системе СИ


- электрическая постоянная.

Сила F называется кулоновской силой , она является силой притяжения, если заряды имеют разные знаки (рис.1), и силой отталкивания, если заряды одного знака.

Если электрические заряды поместить внутрь диэлектрика, то сила электрического взаимодействия уменьшается в соответствии с выражением:


, (2)

где - диэлектрическая проницаемость среды, показывающая, во сколько раз сила взаимодействия точечных зарядов в диэлектрике меньше силы их взаимодействия в вакууме.

Значения диэлектрической проницаемости для некоторых веществ



Поделиться